KRISHNA CHAITANYA INSTITUTE OF TECHNOLOGY & SCIENCES, <u>MARKPAUR</u>

PROGRAMME OUTCOMES

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

DEPARTMENT OF CIVIL ENGINEERING

Program Specific Outcomes (PSOs)

PSO-1: The student has the ability to apply the knowledge of Physics, Chemistry, Mathematics, Programming Skills and Soft Skills to solve Civil Engineering problems

PSO-2: The student has the proficiency in streams of Civil Engineering to visualize and execute the systems for sustainable living.

PSO-3: The student has the practical knowledge and experimental skills to tackle Civil Engineering problems using technical and management skills, exhibiting professional ethics to meet the societal needs.

PSO-4: The program enables the faculty to develop academic proficiency by involving in research & innovation, interaction with industry and professional bodies through technical advice and Continuing Education Programs (CEP) to meet the needs of the user system.

KRISHNA CHAITANYA INSTITUTE OF TECHNOLOGY & SCIENCES

Devarajugattu (Post), Peddaraveedu (Mandal), Prakasam Dist. - 523 320. (Approved by A.I.C.T.E., New Delhi, & Affiliated to JNTUK, Kakinada)

NAAC ACCREDITED INSTITUTION

DEPARTMENT OF CIVIL ENGINEERING

COURSE OUTCOMES -ACADEMIC YEAR - 2017-2018

S.No	Year	Course	Course Name	Course Outcomes
	/Sem	code		(After completion of the course student can able
				to:)
1				CO1: utilize mean value theorems to real life
	I/I	BS1101	Mathematics-I	problems solve the differential equations related to
				various engineering fields.
				CO2: familiarize with functions of several
				variables which is useful in optimization.
				CO3: Apply double integration techniques in
				evaluating areas bounded by region.
				CO4: Students will also learn important tools of
				calculus in higher dimensions. Students will
				become familiar with 2- dimensional and 3-
				dimensional coordinate systems.
2	I/I	BS1102	Mathematics-II	CO1: Develop the use of matrix algebra techniques
				that is needed by engineers for practical
				applications
				CO2: Solve system of linear algebraic equations
				using Gauss elimination, Gauss Jordan, Gauss
				Seidel
				CO2:Evaluate approximating the roots of
				polynomial and transcendental equations by
				CO2: A male Newton's formend & healenend
				interpolation and Lagrange's formulae for equal
				and unequal intervals
				CO4: Apply different algorithms for approximating
				the solutions of ordinary differential equations to its
				analytical computations
3	I/I	BS1108	Engineering	CO1: Identify forces and moments in mechanical
5	1/1	DOTIOO	physics	systems using scalar and vector techniques
			Physics	CO2: extend Newton's second law for inertial and
				non-inertial frame of reference
				CO3: explain simple harmonic motion and damped
				harmonic motions
				CO4: explain how sound is propagated in buildings
				analyze acoustic properties of typically used
				materials in buildings
				CO4:recognize sound level disruptors and their use
				in architectural acoustics
				CO4: Use of ultrasonic's in flaw detection using

				NDT technique CO5:Understand the elasticity and plasticity concepts CO6:Study different types of moduli and their relation CO7:Analyze the concepts of shearing force and moment of inertia CO8:Study Different types of laser systems CO9:Identify different types of sensors and their working principles
4	I/I	ES1104	Engineering Mechanics	 CO1: The students are to be exposed to the concepts of force and friction , CO2: The students are to be exposed to application of free body diagrams. Solution to problemsusing graphical methods and law of triangle of forces. CO3: The students are to be exposed to concepts of centre of gravity CO4: The students are to be exposed to concepts of moment of inertia and polar moment of inertiaincluding transfer methods and their applications. CO5: The students are to be exposed to motion in straight line and in curvilinear paths, its velocityand acceleration computation and methods of representing plane motion. CO6: The students are to be exposed to concepts of work, energy and particle motion
5	I/I	ES1103	Engineering drawing	CO1: The student will learn how to visualize 2D & 3D objects.
6	I/I	HS110 2	English lab	 CO1: The student will learn Vowels, Consonants, Pronunciation, and Phonetic Transcription. CO2: The student will learn Past tense markers, word stress-di-syllabic words, Poly-Syllabic words CO3: The student will learn Rhythm & Intonation and Contrastive Stress.

7	I/I	BS1109	Engineering physics lab	 CO1: Determination of Rigidity modulus of a material- Tensional Pendulum. CO2: Determination of Young's modulus by method of single cantilever oscillations. CO3: Determination of Acceleration due to Gravity and Radius of Gyration compound pendulum. CO4: Determination of spring constant of springs using coupled oscillators. CO5: Measurement of magnetic susceptibility by Gouy's method. CO6: Determination of Moment of Inertia of a Fly Wheel. CO7: Determination of particle size using Laser. CO8:Determination of ultrasonic velocity in liquid CO9: Determination of dielectric constant by charging and discharging method.
8	I/I	PR1101	Engineering Exploration Project	 CO1: Use Design Thinking for problem solving methodology for investigating ill-defined problems. CO2: Undergo several design challenges and work towards the final design challenge
9	I/II	HS120 1	English	 CO1: understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information. CO2: ask and answer general questions on familiar topics and introduce one/other. CO3: employ suitable strategies for skimming and scanning to get the more general idea of a text and locate specific information. CO4: recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs. CO5: form sentences using proper grammatical structures and correct word forms.
10	I/II	BS1203	Mathematics – III	 CO1: Interpret the physical meaning of different operators such as gradient, curl and divergence CO2: Estimate the work done against a field, circulation and flux using vector calculus CO3: Apply the Laplace transform for solving differential equations CO4: Find or compute the Fourier series of

11	I/II	BS1210	Engineering	periodic signals CO5: Know and be able to apply integral expressions for the forwards and inverse Fourier transformto a range of non-periodic waveforms CO6: Identify solution methods for partial differential equations that model physical processes CO1: Explain the preparation, properties and
			chemistry	 applications of some plastic materials. CO2: Interpret the mechanism of conduction in conducting polymers. CO3: Discuss natural and synthetic rubbers and their applications. CO3: Explain the theory of construction of battery and fuel cells. CO4: Categorize the reasons for corrosion and study some methods of corrosion control. CO5: Explain the techniques that detect and measure changes of state of reaction.
12	I/II	ES1201	Programming for problem solving using c	 CO1:To write algorithms and to draw flowcharts for solving problems CO2: To use different operators, data types and write programs that use two way/ multi way section. CO3: To apply file I/O operations. CO4: To select the best loop construct for a given problem. CO5: To design and implement programs to analyze the different pointer applications. CO6:To decompose a problem into functions and to develop modular reusable code CO7:To convert flowcharts/algorithms to C Programs, compile and debug programs
13	I/II	ES1207	Computer aided engineering drawing	 CO1: Student get exposed on working of sheet metal with help of development of surfaces. CO2: Student understands how to know the hidden details of machine components with the help of sections and interpenetrations of solids. CO3:Student shall exposed to modeling commands for generating 2D and 3D objects using computer aided drafting tools which are useful to create machine elements for computer aided analysis.
14	I/II	ES1202	Programming for problem solving using c lab	 CO1: Gains Knowledge on various concepts of a C language. CO2: Able to draw flowcharts and write algorithms.

1				
				CO3: Able design and development of C problem
				solving skills.
				regramming skills
				CO5: Able to trace and debug a program
15	T/IT	DC1011	Engingening	CO1. The students entering into the professional
15	1/11	B21711	engineering	course have prectically very little exposure to lab
			chemistry lab	classes. The experiments introduce volumetric
				enabysis: radox titrations with different indicators:
				EDTA titrations: then they are exposed to a few
				instrumental methods of chemical analysis. Thus at
				the end of the lab course, the student is exposed to
				different methods of chemical analysis and use of
				some commonly employed instruments. They thus
				acquire some experimental skills
16	I/II	ES1203	Communication	CO1: The student will learn Telephonic Etiquette.
			skills lab	Role Plays, and Poster Presentations.
				CO2: Oral Presentation skills, Public speaking,
				Data Interpretation.
				CO3: Group Discussions: Do's and Don'ts- Types,
				Modalities.
				CO4: Preparatory Techniques, Frequently asked
				questions, Mock Interviews.
17	I/II	ES1219	Workshop	CO1: To impart hands-on practice on basic
			practice lab	engineering trades and skills.
10	T/TT	MC120	F ' (1	
18	1/11	MC120	Environmental	COI: Overall understanding of the natural
		1	science	resources.
				. CO2. Design understanding of the approximation and its
				diversity
				diversity.
				CO3: Acquaintance on various environmental
				challenges induced due to unplanned
				anthropogenicactivities.
				CO4: An understanding of the environmental
				impact of developmental activities.
				CO5 Awareness on the social issues,
				environmental legislation and global treaties.
19	II/I	BS301	Complex	CO1: apply Cauchy-Riemann equations to
			Variables and	complex functions in order to determine whether a
			Statistical	givencontinuous function is analytic
			Methods	CO2: find the differentiation and integration of
				complex functions used in engineering problems
				CO3: make use of the Cauchy residue theorem to

				evaluate certain integrals
				CO4: apply discrete and continuous probability
				distributions CO5: design the components of a
				classical hypothesis test
20	II/I	PC301	Strength of	CO1: The student will be able to understand
			materials - i	the basic materials behavior under the
				influence of different external loading
				conditions and the support conditions
				CO2: The student will be able to draw the
				diagrams indicating the variation of the key
				performance features like bending moment and
				shear forces
				CO3: The student will have knowledge of
				bending concepts and calculation of section
				modulus and fordetermination of stresses
				developed in the beams and deflections due to
				various loading conditions
				CO4: The student will be able to assess stresses
				across section of the thin and thick cylinders to
				arrive atoptimum sections to withstand the internal
				pressure using Lame' sequation.
21	TT/T	DC202	Theid are showing	CO1. Understand the regime new setion of
21	11/1	PC302	Fluid mechanics	COI: Understand the various properties of fluids and their influence on fluid motion
				and analyze everiety of problems in fluid
				statics and dynamics
				statics and dynamics.
				CO2: Calculate the forces that act on submerged
				planes and curves.
				CO3: Ability to analyze various types of fluid
				flows.
				CO4: Apply the integral forms of the three
				fundamental laws of fluid mechanics to turbulent
				and laminar flow through pipes and ducts in order
				to predict relevant pressures, velocities and forces
				CO5: Able Measure the quantities of fluid flowing
		DC201		in pipes.
22	11/1	ES301	Surveying and	COI: Apply the knowledge to calculate angles,
			geometrics	distances and levels
				CU2: Identify data collection methods and prepare
				Tield notes
				cus: Understand the working principles of
			1	survey instruments, measurement errors and
				a ma ativa ma a a a a a
				corrective measures

				and volumes, levels by different type of equipmentand relate the knowledge to the modern equipment and methodologies
23	II/I	PC303	Building materials, construction and planning	 CO1: The student should be able to identify different building materials and their importance inbuilding construction. CO2: The student is expected to differentiate brick masonry, stone masonry construction and use of lime and cement in various constructions. CO3: The student should have learnt the importance of building components and finishing's. CO4: The student is expected to know the classification of aggregates, sieve analysis and moisture content usually required in building construction.
24	II/I	PC304	Transportation Engineering – i	 CO1:Plan highway network for a given area. CO2:Determine Highway alignment and design highway geometrics. CO3:Design Intersections and prepare traffic management plans CO4:Judge suitability of pavement materials and design flexible and rigid pavements
25	II/I	PC305	STRENGTH OF MATERIALS LAB	 CO 1 : Evaluate Properties of material by impact test CO 2 : Evaluate Properties of material by hardness test. CO 3 : Evaluate Properties of material by tensile test
26	II/I	PC306	SURVEYING FILED WORK - I	 CO1: Apply the principle of surveying for civil Engineering Applications. CO2: Calculation of areas, Drawing plans and contour maps using different measuring equipment at field level CO3: Write a technical laboratory report
27	II/I	MC301	Constitution of	CO1: Understand the concept of Indian

			india	 constitution. CO2: Apply the knowledge on directive principle of state policy. CO3: Analyze the History, features of Indian constitution. CO4: Evaluate Preamble Fundamental Rights and Duties. CO5Understand the structure of Indian government. CO6:Differentiate between the state and central government CO7: Explain the role of President and Prime Minister. CO8:Know the Structure of supreme court and High court CO9: Understand the local Administration. CO10: Analyze the role of Myer and elected representatives of Municipalities. CO11: Contrast and compare the role of Chief Election commissioner and Commission on erate.
				SC/ST/OBC and women.
28	II/II	PC401	Strength of materials - ii	 CO1: The student will be able to understand the basic concepts of Principal stresses developed ina member when it is subjected to stresses along different axes and design the sections. CO2: The student can asses stresses in different engineering applications like shafts, springs, columns and struts subjected to different loading conditions
29	II/II	PC402	Hydraulics and hydraulic machinery	 CO1: Solve uniform and non uniform open channel flow problems. CO2: Apply the principals of dimensional analysis and similitude in hydraulic model testing. CO3: Understand the working principles of various hydraulic machineries and pumps.
30	II/II	ES401	Engineering gelogoy	CO1: Identify and classify the geological minerals CO2: Measure the rock strengths of various rocks CO3: Classify and measure the earthquake prone areas to practice the hazard zonation CO4: Classify, monitor and measure the Landslides

-				
				 and subsidence CO5: Prepares, analyses and interpret the Engineering Geologic maps CO6: Analyses the ground conditions through geophysical surveys. CO7: Test the geological material and ground to check the suitability of civil engineering projectconstruction. CO8: Investigate the project site for mega/mini civil engineering projects. Site selection for megaengineering projects like Dams, Tunnels, disposal sites etc.
31	II/II	PC403	Tranportation engineering – ii	 CO1: Design geometrics in a railway track. CO2: Plan track layouts and control movement of trains CO3: Design airport geometrics and airfield pavements. Plan, construct and maintain Docks and Harbours
32	II/II	PC404	Environmental engineering- i	 CO1: Estimation of design population and water demand CO2: Identify the water source and select proper intake structure CO3: Characterization of water for drinking, industry and construction CO4: Design of water treatment plant for a village/city CO5: Selection and design of an ideal distribution system
33	II/II	PC405	Engineering Geology Lab	 CO1: Identify Megascopic minerals & their properties. CO2: Identify Megascopic rocks & their properties. CO3: Identify the site parameters such as contour, slope & aspect for topography. CO4: Know the occurrence of materials using the strike & dip problems.
34	II/II	PC406	Transportation Engineering Lab	 CO1: Test aggregates and judge the suitability of materials for the road construction CO2: Test the given bitumen samples and judge their suitability for the road construction CO3: Obtain the optimum bitumen content for Bituminous Concrete CO4: Determine the traffic volume, speed and

				parking characteristics. CO5: Draw highway cross sections and intersections.
35	II/II	PC407	Fluid Mechanics and Hydraulic Machinery Lab	 CO1: Select the suitable bearing based on the application of the loads and predict the life of the bearing. CO2: Design of IC Engines parts. CO3: Design of power transmission elements such as gears, belts, chains, pulleys, ropes, levers and power screws. CO4: Design spur & helical gear for different engineering applications.
36	II/II	MC401	Essence of Indian Knowledge Traditional / Professional Ethics and Human Values	 CO1: Understand philosophy of Indian culture. CO2: Distinguish the Indian languages and literature among difference traditions. CO3: Learn the philosophy of ancient, medieval and modern India. CO4: Acquire the information about the fine arts inIndia. CO5: Know the contribution of scientists of different eras. CO6: The essence of Yogic Science for Inclusiveness ofsociety.
37	III/I	PC501	STRUCTURAL ANALYSIS	 CO1: Distinguish between the determinate and indeterminate structures. CO2: Identify the behaviour of structures due to the expected loads, including the moving loads, actingon the structure. CO3: Estimate the bending moment and shear forces in beams for different fixity conditions. CO4: Analyze the continuous beams using various methods -, three moment method, slope deflectionmethod, energy theorems. CO5:Draw the influence line diagrams for various types of moving loads on beams/bridges. CO6:Analyze the loads in Pratt and Warren trusses when loads of different types and spans are passingover the truss.
38	III/I	PC502	CONCRETE TECHNOLOG Y	CO1: understand basic concepts of concrete. CO2: realize importance of quality of concrete.

				 CO3: familiarize basic ingredients of concrete and their role in concrete and their behavior inthe field. CO4: test fresh concrete properties and hardened concrete properties. CO5: evaluate ingredients of concrete through lab tests. Design concrete mix by IS method. CO6:familiarize basic concepts of special concrete and their production and applications. Understand the behavior of concrete in various
39	III/I	PC503	WATER RESOURCES ENGINEERING - I	 CO1:be able to quantify major hydrologic components and apply key concepts to several practicalareas of engineering hydrology and related design aspects CO2: develop Intensity- Duration-Frequency and Depth- Area Duration curves to design hydraulic structures. CO3:ability to develop design storms and carry out frequency analysis CO4:be able to determine storage capacity and life of reservoirs and develop unit hydrograph andsynthetic hydrograph. CO5: be able to estimate flood magnitude and carry out flood routing. CO6: be able to determine aquifer parameters and yield of wells. CO7: Ability to develop the hydrological models.
40	III/I	PC504	ENVIRONMEN TAL ENGINEERING - II	CO1:Plan and design the sewerage systems by estimating the flow CO2:Design of Plumbing for an apartment, Gated community or Hotels or Individual houses and Select the appropriate appurtenances in the sewerage systems CO3: Estimation of BOD and COD and Suggest a suitable disposal method with respect to effluent standards, and Identify the critical point of pollution in a river for a specific amount of pollutant disposal into the

				river CO4: Analyze sewage and design suitable treatment system for sewage treatment for a village/City. CO5: Design of sewage treatment systems like Septic tank soak pit system and FAB reactor for buildings and understanding tertiary treatment of sewage.
41	III/I	PE501	Construction Technology & Management	 CO1:appreciate the importance of construction planning CO2:understand the functioning of various earth moving equipment CO3:Know the methods of production of aggregate products and concreting and usage of machinery required for the works. CO4:apply the gained knowledge to project management and construction techniques
42	III/I	OE501	WASTEWATE R TREATMENT	CO1:Know the quality and quantity of water for various industries and Advanced water treatmentmethods CO2:Learn the common methods of treatment of wastewaters and Biological treatment methods CO3: Study of methods to reduce impacts of disposal of wasters into environment and CETPs. CO4:Study of methods of treatment of wastewaters from specific industries like steel plants, refineries, and power plants, that imply biological treatment methods CO4:Study of methods of treatment of wastewaters from industries like Aqua, dairy, sugar plants, and distilleries that imply biological treatment methods
43	III/I	PC506	CONCRETE TECHNOLOG Y LAB	 CO1: Determine consistency and fineness of cement. CO2: Determine setting times o f cement. CO3: Determine specific gravity and soundness of cement.

	1			
				 CO4: Determine compressive strength of cement. CO5:Determine workability of cement concrete by compaction factor, slump and Vee – Beetests CO6: Determine specific gravity of coarse aggregate and fine aggregate by Sieve analysis. CO7: Determine flakiness and elongation index of aggregates. CO8: Determine bulking of sand. CO9: Understand non-destructive testing procedures on concrete.
44	III/I	PC507	SURVEYING FIELD WORK – II	 CO1: Apply the principle of surveying for civil Engineering Applications. CO2: Calculation of areas, Drawing plans and contour maps using different measuring equipment at field level CO3: Write a technical laboratory report
45	III/II	PC601	DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES	 CO1:Work on different types of design methods CO2:Carryout analysis and design of flexural members and detailing CO3:Design structures subjected to shear, bond and torsion CO4:Design different type of compression members and footings
46	III/II	PC602	Water Resources Engineering – II	 CO1: be able to estimate irrigation water requirements CO2: ability to design irrigation canals and canal network. CO3: plan an irrigation system CO4: design irrigation canal structures CO5: plan and design diversion head works. CO6: analyze stability of gravity and earth dams CO7: design ogee spillways and energy dissipation works
47	ΠΙ/Π	PC603	Geotechnical Engineering - I	 CO1: The student must know the definition of the various quantities related to soil mechanics and establish their inter-relationships. CO2: The student should be able to know the methods of determination of the various index properties of the soils and classify the soils. CO3: The student should be able to know the importance of the different engineering properties of the soil such as compaction,

				permeability, consolidation and shear strength and determine themin the laboratory. CO4: The student should be able to apply the above concepts in day-to-day civil engineering practice.
48	III/II	HS601	Menagirial economics and financial analysis	 CO1: The Learner is equipped with the knowledge of estimating the Demand and demand elasticities for a product. CO2: The knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs. CO3: The pupil is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units. CO4: The Learner is able to prepare Financial Statements and the usage of various Accounting toolsfor Analysis. CO5: The Learner can able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making.
49	III/II	PE601	Pre-stressed Concrete	 CO1:At the end of this course the student will be able to CO2:Understand different methods of pre stressing CO3:Estimate effective pre stress including short and long term losses CO4:Analyze and design pre stressed concrete beams under flexure and shear CO5:Understand the relevant IS Code provisions for pre stressed concrete
50	III/II	OE601	PROJECT MANAGEMEN T	CO1:appreciate the importance of construction planning C02:understand the functioning of various earth moving equipment CO3:know the methods of production of aggregate products and concreting CO4:apply the gained knowledge to project management and construction techniques
51	III/II	PC604	Cad lab	C01: Model the geometry of real-world

				structure Represent the physical model of structuralelement/structure CO2: Perform analysis CO3: Interpret from the Post processing results CO4: Design the structural elements and a system as per IS Codes
52	III/II	PC605	EVIRONMENT AL ENGINEERING LAB	CO1:Estimate some important characteristics of water, wastewater and soil in the laboratory CO2: Draw some conclusion and decide whether the water is suitable for Drinking/Construction /Agriculture/ Industry. CO3:Estimate Chloride, EC and Salinity of Soil and suggest their suitability for Construction/Agricultur e CO4:Estimation of the strength of the sewage in terms of BOD and COD and Decide whether the water body is polluted or not with reference to the stated parameters in the list of experiments CO5: Demonstration of various instruments used in testing of water and soil and study of Drinking water standards, WHO guidelines, Effluent standards and standards for Construction/ Agriculture/ Industry.
53	III/II	PR601	Socially Relevant Project	 CO1:The student(s) are be able to provide a solutions the technological problems of society CO2:The student(s) is able suggest technological changes which suits current needs of society CO3:The student(s) are able to explain new technologies available for problems of the society
54	III/II	MC601	Employability Skills	CO1:Aptitude skill, CO2:Soft skills, CO3:Skills required for campus placement interview

55	IV/I	PC701	Design & Drawing of Steel Structures	 CO1: Work with relevant IS codes CO2: Carryout analysis and design of flexural members and detailing CO3: Design compression members of different types with connection detailing CO4: Design Plate Girder and Gantry Girder with connection detailing CO5: Produce the drawings pertaining to different components of steel structures
56	IV/I	PC702	Geotechnical Engineering – II	 CO1: The student must be able to understand the various types of shallow foundations and decideon their location based on soil characteristics. CO2: The student must be able to compute the magnitude of foundation settlement and decide onthe size of the foundation accordingly. CO3: The student must be able to use the field test data and arrive at the bearing capacity. CO4: The student must be able to apply the principles of bearing capacity of piles and design themaccordingly.
57	IV/I	PC703	REMOTE SENSING AND GIS	 CO1:Be familiar with ground, air and satellite based sensor platforms. CO2:interpret the aerial photographs and satellite imageries CO3:create and input spatial data for GIS application CO4:apply RS and GIS concepts for application in Civil Engineering
58	IV/I	PE701	Industrial Wastewater Treatment	CO1:Know the quality and quantity of water for various industries and Advanced water treatment methods CO2:Learn the common methods of treatment of wastewaters and Biological treatmentmethods CO2:Study of methods to reduce impacts of disposal of wasters into environment andCETPs.

				CO4:Study of methods of
				treatment of wastewaters from
				specific industries like steel
				plants, refineries, and power
				plants, that imply biological
				treatment methods
				CO5:Study of methods of treatment
				of wastewaters from industries like
				Aqua, dairy, sugarplants, and
				distilleries that imply biological
				treatment methods
59	IV/I	OE701	Traffic safety	 CO1: To understand fundamentals of Traffic Engg. CO2: To investigate and determine the collective factors & remedies of accident involved. CO3: To design and plan various road geometrics. CO4: To manage the traffic system from road safety point of view.
60	IV/I	PC704	Remote Sensing & GIS Lab	 CO1: Work comfortably on GIS software CO2: Digitize and create thematic map and extract important features CO3:Develop digital elevation model CO4: Interpretation and Estimation of features from satellite imagery. CO5: Analyze and Modeling using GIS software.
61	IV/I	PC705	Geotechnical Engineering Lab	 CO1: Determine index properties of soil and classify them. CO2: Determine permeability of soils. CO3: Determine Compaction, Consolidation and shear strength characteristics.
62	IV/I	PR701	Industrial Training/ Internship or Seminar	CO1: know the knowledge in work
63	IV/I	PR702	Project Work Phase-J	CO1: know the knowledge in work
64	IV/II	PC801	Estimation	CO1: The student should be able to
			Specifications	determine the quantities of different
			and Contract	components ofbuildings.

65	137/11	DE901		CO2: The student should be in a position to find the cost of various building components. The student should be capable of finalizing the value of structures
65	1V/11	PE801	Design & Drawing of	able to To design various irrigation structures
			Irrigation	
			Structures	
66	IV/II	PE802	Ground Improvement Techniques	 CO1:By the end of the course, the student should be able to possess the knowledge of variousmethods of ground improvement and their suitability to different field situations. CO2: The student should be in a position to design a reinforced earth embankment and check itsstability. CO3: The student should know the various functions of Geosynthetics and their applications in CivilEngineering practice. CO4: The student should be able to understand the concepts and applications of grouting.
67	IV/II	PR801	PROJECT WORK	 CO1: Apply all levels of Engineering knowledge in solving the Engineering problems. CO2: Work together with team spirit. CO3: Use Civil Engineering software at least one. CO4: Document the projects

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Program Specific Outcomes (PSOs)

PSO-1: Able to utilize the knowledge of Power Electronics in collaboration with Electrical Machines to provide an engineering solution in the areas related to Electrical Drives.

PSO-2: To develop new cutting edge Technologies in Power Systems associated with efficient conversion and control of electrical power.

PSO-3: Able to use software for design, simulation and analysis of electrical systems.

KRISHNA CHAITANYA INSTITUTE OF TECHNOLOGY & SCIENCES

Devarajugattu (Post), Peddaraveedu (Mandal), Prakasam Dist. - 523 320. (Approved by A.I.C.T.E., New Delhi, & Affiliated to JNTUK, Kakinada) NAAC ACCREDITED INSTITUTION

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OUTCOMES - ACADEMIC YEA -2017-2018

S.NO	YEAR/SEM	COURSE CODE	COURSE NAME	Course outcomes (After completion of the course student can able to :)
1	II/I	R1621021	ELECTRICAL CIRCUIT ANALYSIS-II	 C01:Students are able to solve three-phase circuits under balanced and unbalanced Condition. C02: Students are able find the transient response of electrical networks for different types of excitations. C03: Students are able to find parameters for different types of network. C04: Students are able to realize electrical equivalent network for a given network transfer Function. C05: Students are able to extract different harmonics components from the response of a Electrical network. C06: To understand the application of Fourier series and Fourier transforms for analysis of electrical circuits.
2	II/I	R1621022	ELECTRICAL MACHINES – I	 C01: Able to assimilate the concepts of electromechanical energy conversion. C02: Able to mitigate the ill-effects of armature reaction and improve commutation in dc Machines. C03: Able to understand the torque production mechanism and control the speed of dc Motors. C04: Able to analyze the performance of single phase transformers. C05: Able to predetermine

				regulation, losses and efficiency of single phase transformers. C06: Able to parallel transformers, control voltages with tap changing methods and achieve Three-phase to two-phase transformation.
3	11/1	R1621023	BASIC ELECTRONICS AND DEVICES	 C01: Students are able to understand the basic concepts of semiconductor physics, which are useful to understand the operation of diodes and transistors. C02: Students are able to explain the operation and characteristics of PN junction diode and special diodes. C03: Ability to understand operation and design aspects of rectifiers and regulators. C04: Students are able to understand the characteristics of various transistor configurations. They become familiar with different biasing, stabilization and compensation techniques used in transistor circuits. C05: Students are able to understand the operation and characteristics of FET, Thyristors, Power IGBTs and Power MOSFETs. C06: Students are able to understand the merits and demerits of positive and negative feedback and the role of feedback in oscillators and amplifiers.

4	11/1	R1621024	ELECTROMAGNETIC FIELDS	 C01: To Determine electric fields and potentials using gauss's lawor solving Laplace's or Poisson's equations, for various electric charge distributions. C02: To Calculate and design capacitance, energy stored in dielectrics. C03: To Calculate the magnetic field intensity due to current, the application of ampere's law and the Maxwell's second and third equations. C04: To determine the magnetic forces and torque produced by currents in magnetic field. C05: To determine self and mutual inductances and the energy stored in the magnetic field. C06: To calculate induced e.m.f., understand the concepts of displacement current and Poynting vector.
5	II/I	R1621025	THERMAL AND HYDRO PRIME MOVERS	 C01: To make the student learn about the constructional features, operational details of various types of internal combustion engines through the details of several engine systems and the basic air standard cycles, that govern the engines. C02: To train the student in the aspects of steam formation and its utilities through the standard steam data tables and charts. C03: To impart the knowledge of gas turbine fundamentals, the governing cycles and the methods to improve the efficiency of gas turbines. C04: To teach the student about the fundamental of fluid dynamic equations and its applications fluid jets. C05: To make the student learn about

				the constructional features, operational details of various types of hydraulic turbines. C06: To train the student in the areas of types of hydro electric power plants, Estimation and calculation of different loads by considering various factors.
6	11/1	R1621026	MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS	C01: The Learner is equipped with the knowledge of estimating the Demand and demand elasticity's for a product and the knowledge of understanding of the Input-Output- Cost relationships and estimation of the least cost combination of inputs. C02: One is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units. C03: The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis and to evaluate various investment project proposals with the help of capital budgeting techniques for decision making. C04: The student is to learn different types of business organizations and business cycles . C05: The student is to learn introduction to accounting and financing analysis. C06: The student is to learn capital and capital budgeting.

7	II/I	R1621027	THERMAL AND HYDRO LAB	 C01: To impart practical knowledge on the performance evaluation methods of various internal combustion engines. C02: To impart practical knowledge on the performance evaluation methods of flow measuring equipment. C03: To impart practical knowledge on the performance evaluation methods of hydraulic turbines. C04: To impart practical knowledge on the performance evaluation methods of hydraulic turbines. C04: To impart practical knowledge on the performance evaluation methods of hydraulic pumps. C05: To impart practical knowledge on the Calibration of Venturimeter. C06: To impart practical knowledge on the boilers .
8	11/1	R1621028	ELECTRICAL CIRCUITS LAB	 C01: Able to apply various thermos, determination of self and mutual inductances, two port parameters of a given electric circuits. C02: Able to draw locus diagrams. C03: Waveforms and phasor diagram for lagging and leading networks. C04: To verify and demonstrate various thermos, resonance and two port networks. C05: To verify and demonstrate transmission and hybrid parameters. C06: To verify and demonstrate parameters of a choke coil.

9	П/П	R1622021	ELECTRICAL MEASUREMENTS	 C01: Able to choose right type of instrument for measurement of voltage and current for ac and dc. C02: Able to choose right type of instrument for measurement of power and energy – able to calibrate energy meter by suitable method. C03: Able to calibrate ammeter and potentiometer. C04: Able to select suitable bridge for measurement of electrical parameters. C05: Able to use the ballistic galvanometer and flux meter for magnetic measuring Instruments. C06: Able to measure frequency and phase difference between signals using CRO. Able to use digital instruments in electrical measurements.
10	11/11	R1622022	ELECTRICAL MACHINES – II	 C01: Able to explain the operation and performance of three phase induction motor. C02: Able to analyze the torque- speed relation, performance of induction motor and induction generator. C03: Able to explain design procedure for transformers and three phase induction motors. C04: Implement the starting of single phase induction motors. C05: To perform winding design and predetermine the regulation of synchronous generators. C06: Avoid hunting phenomenon, implement methods of staring and correction of power factor with synchronous motor.

11	II/II	R1622023	SWITCHING THEORY AND LOGIC DESIGN	 C01:The student able to learn about number system and codes. C02: The student able to learn about minimization techniques. C03: The student able to learn about combinational logic circuits design. C04: Able to analyze the PLDs C05: The student able to learn about sEQUENTIAL CIRCUITS I C06: The student able to learn about SEQUENTIAL CIRCUITS II
12	11/11	R1622024	CONTROL SYSTEMS	 C01: Ability to derive the transfer function of physical systems and determination of Overall transfer function using block diagram algebra and signal flow graphs. C02: Capability to determine time response specifications of second order systems and to Determine error constants. C03: Acquires the skill to analyze absolute and relative stability of LTI systems using Routh's stability criterion and the root locus method. C04: Capable to analyze the stability of LTI systems using frequency response methods. C05: Able to design Lag, Lead, Lag-Lead compensators to improve system performance from Bode diagrams. C06: Ability to represent physical systems as state models and determine the response. Understanding the concepts of controllability and observability.

13	11/11	R1622025	POWER SYSTEMS-I	 C01: Students are able to identify the different components of thermal power plants. C02: Students are able to identify the different components of nuclear Power plants. C03: Students are able to distinguish between AC/DC distribution systems and also Estimate voltage drops of distribution systems. C04: Students are able to identify the different components of air and gas insulated Substations. C05: Students are able to identify single core and multi core cables with different Insulating materials. C06: Students are able to analyze the different economic factors of power generation and tariffs.
14	II/II	R1622026	MANAGEMENT SCIENCE	 C01: The student will acquire the knowledge on management functions. C02: Will familiarize with the concepts of functional management. C03: Will familiarize with the concepts of strategic management. C04: Will familiarize with the concepts of project management. C05: The student will acquire the knowledge on global leadership. C06: The student will acquire the knowledge on organizational behavior.

15	II/II	R1622027	ELECTRICAL MACHINES – I LABORATORY	 C01: To determine and predetermine the performance of DC machines. C02: To control the speed of DC motor. C03: To achieve three phase to two phase transformation. C04: To determine and predetermine the performance of Transformers. C05: To plot the magnetizing characteristics of DC shunt generator and understand the Mechanism of self-excitation. C06: To predetermine the efficiency and regulation of transformers and assess their Performance.
16	11/11	R1622028	ELECTRONIC DEVICES AND CIRCUITS LAB	 C01: The students are required to perform the experiment to obtain the V-I characteristics of rectifiers and to determine the relevant parameters from the obtained graphs. C02: The students are required to perform the experiment to obtain the V-I characteristics of BJT and to determine the relevant parameters from the obtained graphs. C03: The students are required to perform the experiment to obtain the V-I characteristics of PN junction diode and to determine the relevant parameters from the obtained graphs. C04: The students are required to perform the experiment to obtain the V-I characteristics of zenor diode and to determine the relevant parameters from the obtained graphs. C05: The students are required to perform the experiment to obtain the V-I characteristics of SCR and to determine the relevant parameters from the obtained graphs.

				C06: The students are required to perform the experiment to obtain the V-I characteristics of UJT and to determine the relevant parameters from the obtained graphs.
17	III/I	R1631021	POWER SYSTEMS–II	 C01: Able to understand parameters of various types of transmission lines during different operating conditions. C02: Able to understand the performance of short and medium transmission lines. C03: Student will be able to understand travelling waves on transmission lines. C04: Will be able to understand various factors related to charged transmission lines. C05: Will be able to understand sag/tension of transmission lines and performance of line Insulators. C06: To study the performance and modeling of long transmission lines.
18	III/I	R1631022	RENEWABLE ENERGY SOURCES	 C01: Analyze solar radiation data, extraterrestrial radiation, and radiation on earth's Surface. C02: Design solar thermal collectors, solar thermal plants. C03: Design solar photo voltaic systems. C04: Develop maximum power point techniques in solar PV and wind energy systems. C05: Explain wind energy conversion systems, wind generators, power generation. C06: Explain basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems.

19	III/I	R1631023	SIGNALS & SYSTEMS	 C01: Characterize the signals and systems and principles of vector spaces, Concept of orthgonality. C02: Analyze the continuous-time signals and continuous-time systems using Fourier series, Fourier transform and Laplace transform. C03: Apply sampling theorem to convert continuous-time signals to discrete-time signal and reconstruct back. C04: Understand the relationships among the various representations of LTI systems. C05: Understand the Concepts of convolution, correlation, Energy and Power density spectrum and their relationships. C06: Apply z-transform to analyze discrete-time signals and systems.
20	111/1	R1631024	PULSE AND DIGITAL CIRCUITS	 C01: Design linear and non-linear wave shaping circuits. C02: Apply the fundamental concepts of wave shaping for various switching and signal generating circuits. C03: Design different multivibrators and time base generators. C04: Utilize the non sinusoidal signals in many experimental research areas. C05: To understand the concept of Switching Characteristics of diode and transistor. C06: To learn the working of logic families & Sampling Gates.

21	III/I	R1631025	POWER ELECTRONICS	 C01: Explain the characteristics of various power semiconductor devices and analyze the static and dynamic characteristics of SCR's. C02: Design firing circuits for SCR. C03: Explain the operation of single phase full–wave converters and analyze harmonics in the input current. C04: Explain the operation of three phase full–wave converters. C05: Analyze the operation of different types of DC-DC converters. C06: Explain the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation. C07: Analyze the operation of AC-AC regulators.
22	111/1	R1631026	ELECTRICAL MACHINES – II LABORATORY	 C01: Able to assess the performance of single phase and three phase induction motors. C02: Able to control the speed of three phase induction motor. C03: Able to predetermine the regulation of three–phase alternator by various methods. C04: Able to find the Xd/ Xqratio of alternator and assess the performance of three–phase synchronous motor. C05: To improve the power factor of single phase induction motor . C06: The student able to draw the V and Inverted V curves of a three—phase synchronous motor.

23	III/I	R1631027	CONTROL SYSTEMS LAB	 C01: Able to analyze the performance and working Magnetic amplifier, D.C and A.C. servo motors and synchronous motors. C02: Able to design P,PI,PD and PID controllers. C03: Able to design lag, lead and lag–lead compensators. C04: Able to control the temperature using PID controller. C05: Able to determine the transfer function of D.C.motor. C06: Able to control the position of D.C servo motor performance.
24	III/I	R1631028	ELECTRICAL MEASUREMENTS LABORATORY	 C01: To be able to measure the electrical parameters voltage, current, power, energy and electrical characteristics of resistance, inductance and capacitance. C02: To be able to test transformer oil for its effectiveness. C03: To be able to measure the parameters of inductive coil. C04: The student able to learn measurement of Power by 3 Voltmeter and 3 Ammeter method. C05: The student able to learn calibration of LPF wattmeter by direct loading. C06: The student able to learn Testing of P.T. using absolute null method.

25	III/I		INTELLECTUAL PROPERTY RIGHTS AND PATENTS	 C01: IPR Laws and patents pave the way for innovative ideas which are instrumental for inventions to seek Patents. C02: Student get an insight on Copyrights, Patents and Software patents which are instrumental for further advancements. C03: To know the importance of Intellectual property rights, which plays a vital role in advanced Technical and Scientific disciplines. C04: Imparting IPR protections and regulations for further advancement, so that the students can familiarize with the latest developments. C05: The student know about trademarks. C06: The student know about cyberlaw and cyber crime.
26	III/II	R1632021	POWER ELECTRONIC CONTROLLERS & DRIVES	 C01: Explain the fundamentals of electric drive and different electric braking methods. C02: Analyze the operation of three phase converter fed dc motors and four quadrant operations of dc motors using dual converters. C03: Describe the converter control of dc motors in various quadrants of operation. C04: Know the concept of speed control of induction motor by using AC voltage controllers and voltage source inverters. C05: Differentiate the stator side control and rotor side control of three phase induction motor.

	1	1		
				mechanism of synchronous motors.
				C01 : Able to draw impedance
				diagram for a power system network
				and to understand per
				and to understand per
				unit quantities.
				C02: Able to form aYbusand Zbusfor a
				power system networks.
				C03: Able to understand the load
				flow solution of a power system using
	III/II	R1632022		different methods.
				C04: Able to find the fault currents
27			POWERSYSTEM	for all types faults to provide data for
			ANALYSIS	the design of
				protective devices
				CU5: Able to find the sequence
				components of currents for unbalanced
				power system
				network.
				C06: Able to analyze the steady state,
				transient and dynamic stability
				concepts of a power
				system.
28	III/II	R1632023	MICROPROCESSORS AND MICROCONTROLLERS	 C01: To be able to understand the microprocessor capability in general and explore the evaluation of microprocessors. C02: To be able to understand the addressing modes of microprocessors. C03: To be able to understand the micro controller capability. C04: To be able to program mp and mc. C05: To be able to interface mp and mc with other electronic devices. C06: To be able to develop cyber physical systems.
----	--------	----------	---	--
29	Ш/П	R1632024	DATA STRUCTURES THROUGH C++	 C01: Distinguish between procedures and object oriented programming. C02: Apply advanced data structure strategies for exploring complex data structures. C03: Compare and contrast various data structures and design techniques in the area of Performance. C04: Implement data structure algorithms through C++. • Incorporate data structures into the applications such as binary search trees, AVL and B Trees. C05: Implement all data structures like stacks, queues, trees, lists and graphs and compare their Performance and trade offs. C06:Sorting implementation, how to solve dis order formats.
30	111/11	R163202A	UNIX AND SHELL PROGRAMMIN OPEN ELECTIVE	 C01: Documentation will demonstrate good organization and readability. C02: File processing projects will require data organization, problem solving and research. C03: Scripts and programs will

				demonstrate simple effective user interfaces. C04: Scripts and programs will demonstrate effective use of structured programming.
				C05: Scripts and programs will be accompanied by printed output demonstrating
				completion of a test plan.
				C06: Testing will demonstrate both
				black and glass box testing strategies.
				C07: Project work will involve group
				participation.
				C01: Explain what constitutes an
				programming and identify
			potentialbenefits of object-oriented	
				object-oriented approach to programming and identify potentialbenefits of object-oriented programming over other approaches.
				C02: Apply an object-oriented
				approach to developing applications of
				varying complexities.
31		R163202B	OOPs through Java	C03: To strengthen their problem
51		R103202D		solving ability by applying the
				characteristics of an
				object- oriented approach.
				CU4: To introduce object oriented
				concepts in $C++$ and Java.
				CUS: The student able to learn about
				CO6. The student ship to student
				different prigrams
				unrerent prigrams.

32	111/11	R163202C	VLSI DESIGN	 C01: Understand the properties of MOS active devices and simple circuits configured when using them and the reason for such encumbrances as ratio rules by which circuits can be interconnected in silicon. C02: Know three sets of design rules with which CMOS designs may be fabricated. C03: Understand the scaling factors determining the characteristics and performance of MOS circuits in silicon. C04: Know three sets of design rules with which nMOS designs may be fabricated. C05: Design processes are aided by simple concepts such as stick and symbolic diagrams but the key element is a set of design rules, which are explained clearly. C06: Basic circuit concepts are introduced for MOS processes we can set out approximate circuit parameters which greatly ease
				the design process. C01: The Student must be able to design automatic manufacturing cells with robotic control Using. C02: The principle behind robotic
33	111/11	R163202D	ROBOTICS	 drive system, end effectors, sensor, machine vision robot Kinematics and programming. C03: To introduce the basic concepts, parts of robots and types of robots. C04: To make the student familiar with the various drive systems for robot, sensors and Their applications in robots and programming of robots. C05: To discuss about the various application and

				implementation of robot. C06: The student to know aboutManipulators.
34	Ш/П	R163202E	NEURAL NETWORKS AND FUZZY LOGIC	 C01: Know different models of artificial neuron. C02: Use learning methods of ANN. C03: Use different paradigms of ANN. C04: Classify between classical and fuzzy sets. C05: Use different modules of Fuzzy logic controller. C06: Apply Neural Networks and fuzzy logic for real-time applications.
35	III/II	R163202F	ENERGY AUDIT, CONSERVATION & MANAGEMENT	 C01: Explain energy efficiency, conservation and various technologies. C02: Design energy efficient lighting systems. C03: Calculate power factor of systems and propose suitable compensation techniques. C04: Explain energy conservation in HVAC systems. C05: Calculate life cycle costing analysis and return on investment on energy efficient technologies. C06: The student able to learn about basic Principles of Energy Audit and management.

36	III/II	R1632026	POWER ELECTRONICS LAB	C01: Able to study the characteristics of various power electronic devices and analyze gate drive circuits of IGBT. C02: Able to analyze the performance of single–phase and three–phase full–wave bridge converters with both resistive and inductive loads. C03: Able to understand the operation of single phase AC voltage regulator with resistive and inductive loads. C04: Able to understand the working of Buck converter, Boost converter, single–phase square wave inverter and PWM inverter. C05: To study the characteristics of various power electronic devices and analyze firing circuits and commutation circuits of SCR. C06: Able to understand the working of single–phase square wave inverter and PWM inverter
37	III/II	R1632027	MICRO PROCESSORS AND MICRO CONTROLLERS LAB	 C01: Will be able to write assembly language program using 8086 micro based on arithmetic, logical, and shift operations. C02: Will be able to interface 8086 with I/O and other devices. C03: Will be able to do parallel and serial communication using 8051 & PIC 18 micro controllers. C04: To study programming based on 8086 microprocessor and 8051 microcontroller. C05: Will be able to converting packed BCD to unpacked BCD, BCD to ASCII conversion.

				C06: By using string operation and Instruction prefix.
38	III/II	R1632028	DATASTRUCTURES THROUGH C LAB	 C01: Be able to design and analyze the time and space efficiency of the data structure C02: Be capable to identity the appropriate data structure for given problem. C03: Have practical knowledge on the application of data structures. C04: To develop skills to design and analyze simple linear and non linear data structures. C05: The Implementation of Breadth First Search Techniques and Implementation of Depth First Search Techniques. C06: To implementation of Dijkstra's Algorithm and implementation of Kruskal's Algorithm.

39	Ш/П	R1632029	PROFESSIONAL ETHICSAND HUMAN VALUES	 C01: It gives a comprehensive understanding of a variety issues that are encountered by every professional in discharging professional duties. C02: It provides the student the sensitivity and global outlook in the contemporary world to fulfill the professional obligations effectively. C03: To give basic insights and inputs to the student to inculcate Human values to grow as a responsible human beings with proper personality. C04: Professional Ethics instills the student to maintain ethical conduct and discharge their professional duties. C05:To know about Engineers' Responsibilities towards Safety and Risk. C06:The student get knowledge on Global Issues.
40	IV/I	R1641021	UTILIZATION OF ELECTRICAL ENERGY	 C01: Able to identify a suitable motor for electric drives and industrial applications. C02: Able to identify most appropriate heating or welding techniques for suitable Applications. C03: Able to understand various level of illuminosity produced by different illuminating Sources. C04: Able to estimate the illumination levels produced by various sources and recommend the most efficient illuminating sources and should be able to design different lighting systems by taking inputs and constraints in view.

				C05: Able to determine the speed/time characteristics of different types of traction motors. C06: Able to estimate energy consumption levels at various modes of operation.
41	IV/I	R1641022	LINEAR IC APPLICATIONS	 C01: Design circuits using operational amplifiers for various applications. C02: Analyze and design amplifiers and active filters using Op-amp. C03: Diagnose and trouble-shoot linear electronic circuits. C04: Understand the gain-bandwidth concept and frequency response of the amplifier configurations. C05: Understand thoroughly the operational amplifiers with linear integrated circuits. C06: To learn the internal structure, operation and applications of different analog ICs.
42	IV/I	R1641023	POWER SYSTEM OPERATION AND CONTROL	 C01: Able to compute optimal scheduling of Generators. C02: Able to understand hydrothermal scheduling. C03: Understand the unit commitment problem. C04: Able to understand importance of the frequency. C05: Understand importance of PID controllers in single area and two area systems. C06: Will understand reactive power

				control and compensation for transmission line.
43	IV/I	R1641024	SWITCHGEAR AND PROTECTION	 C01: Able to understand the principles of arc interruption for application to high voltage circuit breakers of air, oil, vacuum, SF6 gastype. C02: Ability to understand the working principle and operation of different types of electromagnetic protective relays. C03: Students acquire knowledge of faults and protective schemes for high power generator and transformers. C04: Improves the ability to understand various types of protective schemes used for feeders and bus bar protection. C05: Able to understand different types of static relays and their applications. C06: Able to understand different types of over voltages and protective schemes required for insulation co–ordination.

44	IV/I	R164102A	ELECTRICAL MACHINE MODELING & ANALYSIS	 C01: Develop modeling of dc machine. C02: Apply mathematical modeling concepts to 3-phase Induction machines. C03: Design control strategies based on dynamic modeling of 3-ph Induction machines and 3-phase synchronous machine. C04: Analyze BLDC Machine and switched reluctance machine based on mathematical modeling of BLDCM and SRM. C05: Establish unified theory of rotating machines. C06: To understand the concept of phase transformation.
45	IV/I	R164102B	ADVANCED CONTROL SYSTEMS	 C01: State space representation of control system and formulation of different state models are reviewed. C02: Able to design of control system using the pole placement technique is given after introducing the concept of controllability and observability. C03: Able to analyse of nonlinear system using the describing function technique and phase plane analysis. C04: Able to analyse the stability analysis using lypnov method. C05: Minimization of functionals using calculus of variation studied. C06: Able to formulate and solve the LQR problem and riccatti equation.

46	IV/I	R164102C	PROGAMMABLE LOGIC CONTROLLERS & APPLICATIONS	 C01: Understand the PLCs and their I/O modules. C02: Develop control algorithms to PLC using ladder logic. C03: Manage PLC registers for effective utilization in different applications. C04: Design PID controller with PLC. C05: To have knowledge on PLC. C06: acquire the knowledge on programming of PLC.
47	IV/I	R164102D	INSTRUMENTATION	 C01: □ Able to represent various types of signals. C02: Acquire proper knowledge to use various types of Transducers. C03: Able to monitor and measure various parameters such as strain, velocity, temperature, pressure etc. C04: Acquire proper knowledge and working principle of various types of digital voltmeters. C05: Able to measure various parameter like phase and frequency of a signal with the help of CRO. C06: Acquire proper knowledge and able to handle various types of signal analyzers.

48	IV/I	R164102E	OPTIMIZATION TECHNIQUES	C01: State and formulate the optimization problem, without and with constraints, by using design variables from an engineering design problem. C02: Apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints, and arrive at an optimal solution. C03: Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions. C04: Apply gradient and non- gradient methods to nonlinear optimization problems and use interior or exterior penalty functions for the constraints to derive the optimal solutions. C05: Able to apply Genetic algorithms for simple electrical problems. C06: Able to solve practical problems using PSO.
49	IV/I	R164102F	ELECTRIC POWER QUALITY	 C01: Differentiate between different types of power quality problems. C02: Explain the sources of voltage sag, voltage swell, interruptions, transients, long duration over voltages and harmonics in a power system. C03: Analyze power quality terms and power quality standards. C04: Explain the principle of voltage regulation and power factor improvement methods. C05: Demonstrate the relationship

				between distributed generation and power quality. C06: Explain the power quality monitoring concepts and the usage of measuring instruments.
50	IV/I	R164102G	SPECIAL ELECTRICAL MACHINES	 C01: Distinguish between brush dc motor and brush less dc motor. C02: Explain the performance and control of stepper motors, and their applications. C03: Explain theory of operation and control of switched reluctance motor. C04: Explain the theory of travelling magnetic field and applications of linear motors. C05: Understand the significance of electrical motors for traction drives. C06: To describe the operation and characteristics of permanent magnet dc motor.
51	IV/I		ELECTRICAL SIMULATION LAB	 C01: Able to simulate integrator circuit, differentiator circuit. C02: Able to simulate transmission line by incorporating line models. C03: Able to perform transient analysis of RLC circuit and single machine connected to infinite bus(SMIB). C04: Able to simulate integrator circuit Boost converter, Buck Converter. C05: Able to simulate integrator circuit , full convertor and PWM inverter.

			C06: Able to simulate transmission line by load and transformer models.
52	IV/I	POWER SYSTEMS LAB	 C01: The student is able to determine the parameters of various power system components which are frequently occur inpower system studies and he can execute energy mana- gment systems functions at load dispatch center. C02: To impart the practical knowledge of functioning of various power system components and determination of various parameters. C03: To impart the practical knowledge of simulation of load flows. C04: To impart the practical knowledge of transient stability C05: To impart the practical knowledge of LFC C06: To impart the practical knowledge of LFC

53	IV/II R16		DIGITAL CONTROL SYSTEMS	C01: The students learn the advantages of discrete time control systems and the "know how" of various associated accessories. C02: The learner understand z– transformations and their role in the mathematical analysis of different systems(like Laplace transforms in analog systems).
		R1642021		 C03: The stability criterion for digital systems and methods adopted for testing the same are explained. C04: Finally, the conventional and state space methods of design are also introduced. C05: To examine the stability of the
				system using different tests. C06: To study the design of state feedback control by "the pole placement method."
54	IV/II	R1642022	H.V.D.C. TRANSMISSION	 C01: Learn different types of HVDC levels and basic concepts. C02: Know the operation of converters. C03: Acquire control concept of reactive power control and AC/DC load flow. C04: Understand converter faults, protection and harmonic effects. C05: Design low pass and high pass filters. C06: To analyze the converter configuration.

55	IV/II	R1642023	ELECTRICAL DISTRIBUTION SYSTEMS	 C01: Able to understand various factors of distribution system. C02: Able to design the substation and feeders. C03: Able to determine the voltage drop and power loss. C04: Able to understand the protection and its coordination. C05: Able to understand the effect of compensation forp.f improvement. C06: Able to understand the effect of voltage control.
56	IV/II		HIGH VOLTAGE ENGINEERING	 C01: To be acquainted with the performance of high voltages with regard to different configurations of electrode systems. C02: To be able to understand theory of breakdown and withstand phenomena of all types of dielectric materials. C03: To acquaint with the techniques of generation of AC,DC and Impulse voltages. C04: To be able to apply knowledge for measurement of high voltage and high current AC,DC and Impulse. C05: To be in a position to measure dielectric property of material used for HV equipment. C06: To know the techniques of testing various equipment's used in HV engineering.

57	IV/II	R164202B	FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS	 C01: Understandpower flow control in transmission lines using FACTS controllers. C02: Explain operation and control of voltage source converter. C03: Analyze compensation methods to improve stability and reduce power oscillations in the transmission lines. C04: Explain the method of shunt compensation using static VAR compensators. C05: Understand the methods of compensators. C06: Explain operation of Unified Power Flow Controller (UPFC).
58	IV/II		POWER SYSTEM REFORMS	 C01: Will understand importance of power system deregulation and restructuring. C02: Able to compute Available Transfer Capability. C03: Will understand transmission congestion management. C04: Able to compute electricity pricing in deregulated environment. C05: Will be able to understand power system operation in deregulated environment. C06: Will understand importance of ancillary services.

HOD-EEE

B.Tech (MECHANICAL ENGINEERING)

PROGRAM SPECIFIC OUTCOMES (PSOS)

PSO-1: An ability to apply the engineering and fundamental knowledge in the areas of pneumatics, electro- pneumatics, robotics, automation, additive manufacturing, engineering and management to develop the solutions of mechanical engineering problems.

PSO-2: Graduates shall have an ability to enhance their technical and professional skills to utilize their knowledge in specification of fabrication, testing, operation of basic mechanical system/process and have the ability to apply the learned principles to the design, analysis, development and implementation of advanced mechanical systems.

KRISHNA CHAITANYA INSTITUTE OF TECHNOLOGY & SCIENCES

Devarajugattu (Post), Peddaraveedu (Mandal), Prakasam Dist. - 523 320. (Approved by A.I.C.T.E., New Delhi, & Affiliated to JNTUK, Kakinada) NAAC ACCREDITED INSTITUTION

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE OUTCOMES - ACADEMIC YEAR -2017-2018

S.NO	Year	Course	Course Name	Course Outcomes
	/sem	code		(After completion of the course student can
				able to:)
1	I/I	BS1101	Mathematics-I	 CO1: utilize mean value theorems to real life problems solve the differential equations related to various engineering fields. CO2: familiarize with functions of several variables which is useful in optimization. CO3: Apply double integration techniques in evaluating areas bounded by region. CO4: Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems.
2	I/I	BS1102	Mathematics-II	 CO1:Develop the use of matrix algebra techniques that is needed by engineers for practical applications CO2:Solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel CO2:Evaluate approximating the roots of polynomial and transcendental equations by different algorithms CO3:Apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals CO4: Apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations.
3	I/I	BS1108	Engineering physics	CO1:Identify forces and moments in mechanical systems using scalar and vector techniques CO2:extend Newton's second law for inertial and non-inertial frame of reference CO3:explain simple harmonic motion and damped harmonic motions CO4:explain how sound is propagated in buildings analyze acoustic properties of typically used materials in buildings

r				
				CO4:recognize sound level disruptors and their use in architectural acoustics CO4:Use of ultrasonic's in flaw detection using NDT technique
				COS: Orderstand the elasticity and plasticity concepts CO6: Study different types of moduli and their relation
				CO7: Analyze the concepts of shearing force and moment of inertia CO8: Study Different types of laser systems CO9: Identify different types of sensors and their working principles
				CO10: summarize various types of polarization of dielectrics.
				CO11: classify the magnetic materials based on susceptibility and their temperature dependence. CO12: Apply the concept of magnetism to magnetic devices.
				CO13: interpret Lorentz field and Claussius Mosotti relation in dielectrics.
4	I/I	ES1101	Programming for problem solving using c	 CO1:To write algorithms and to draw flowcharts for solving problems CO2: To use different operators, data types and write programs that use two way/ multi way section. CO3: To apply file I/O operations. CO4: To select the best loop construct for a given problem. CO5: To design and implement programs to analyze the different pointer applications. CO6:To decompose a problem into functions and to develop modular reusable code
				CO7: To convert flowcharts/algorithms to C Programs, compile and debug programs
5	I/I	ES1103	Engineering drawing	CO1: The student will learn how to visualize 2D & 3D objects.
6	I/I	HS1102	English lab	 CO1: The student will learn Vowels, Consonants, Pronunciation, and Phonetic Transcription. CO2: The student will learn Past tense markers, word stress-di-syllabic words, Poly-Syllabic words CO3: The student will learn Rhythm &

	r			
				Intonation and Contrastive Stress.
7	I/I	BS1109	Engineering	CO1: Determination of Rigidity modulus of a
			physics lab	material- Tensional Pendulum.
				CO2: Determination of Young's modulus by
				CO3: Determination of Acceleration due to
				Gravity and Radius of Gyration compound
				pendulum.
				CO4: Determination of spring constant of
				springs using coupled oscillators.
				CO5: Measurement of magnetic susceptibility
				by Gouy's method.
				CO0: Determination of Moment of Inertia of a Fly Wheel
				CO7: Determination of particle size using
				Laser.
				CO8:Determination of ultrasonic velocity in
				liquid
				CO9: Determination of dielectric constant by
				charging and discharging method.
8	I/I	ES1102	Programming for	CO1: Gains Knowledge on various concepts of
			problem solving	a C language.
			using c lab	CO2: Able to draw flowcharts and write
				algorithms. $CO3$: Able design and development of C
				problem solving skills.
				C04: Able to design and develop modular
				programming skills.
			~	CO5: Able to trace and debug a program.
9	1/1	MC1104	Constitution of	CO1: Understand the concept of Indian
			India	CO2: Apply the knowledge on directive
				principle of state policy
				CO3: Analyze the History, features of Indian
				constitution.
				CO4: Evaluate Preamble Fundamental Rights
				and Duties.
				covernment
				CO6: Differentiate between the state and central
				government
				CO7: Explain the role of President and Prime
				Minister.
				CO8: Know the Structure of supreme court and

				 High court CO9: Understand the local Administration. CO10: Analyze the role of Myer and elected representatives of Municipalities. CO11: Contrast and compare the role of Chief Election commissioner and Commission on erate. CO12: Evaluate various commissions of via SC/ST/OBC and women.
10	I/II	HS1201	English	 CO1: understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information. CO2: ask and answer general questions on familiar topics and introduce one/other. CO3: employ suitable strategies for skimming and scanning to get the more general idea of a text and locate specific information. CO4: recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs. CO5: form sentences using proper grammatical structures and correct word forms.
11	I/II	BS1210	Engineering chemistry	 CO1: Explain the preparation, properties and applications of some plastic materials. CO2: Interpret the mechanism of conduction in conducting polymers. CO3: Discuss natural and synthetic rubbers and their applications. CO3: Explain the theory of construction of battery and fuel cells. CO4: Categorize the reasons for corrosion and study some methods of corrosion control. CO5: Explain the techniques that detect and measure changes of state of reaction.
12	I/II	BS1204	Engineering mechanics	 CO1: The student should be able to draw free body diagrams for FBDs for particles and rigid bodies in plane and space and problems to solve the unknown forces, orientations and geometric parameters. CO2: He should be able to determine centroid for lines, areas and center of gravity for volumes and their composites. CO3: He should be able to determine area and

				mass movement of inertia for composite
				sections.
				CO4: He should be able to analyze motion of
				particles and rigid bodies and apply the
				principles of motion, work energy and impulse
				– momentum.
13	I/II	ES1206	Basic electrical &	CO1: Analyze various electrical networks.
			electronics	CO2: Understand operation of DC generators,
			engineering	3-point starter and DC machine testing by
				Swinburne's Test and Brake test.
				CO3: Analyze performance of single-phase
				transformer and acquire proper knowledge and
				working of 3-phase alternator and 3-phase
				induction motors.
				CO4: Analyze operation of half wave, full wave
				bridge rectifiers and OP-AMPs.
				CO5: Understanding operations of CE amplifier
				and basic concept of feedback amplifier.
14	I/II	ES1207	Computer aided	CO1: Student get exposed on working of sheet
			engineering	metal with help of development of surfaces.
			drawing	CO2: Student understands how to know the
				hidden details of machine components with the
				help of sections and interpenetrations of solids.
				CO3: Student shall exposed to modeling
				commands for generating 2D and 3D objects
				using computer aided drafting tools which are
				useful to create machine elements for computer
				aided analysis.
15	I/II	HS1203	Communication	CO1: The student will learn Telephonic
			skills lab	Etiquette, Role Plays, and Poster Presentations.
				CO2: Oral Presentation skills, Public speaking,
				Data Interpretation.
				CO3: Group Discussions: Do's and Don'ts-
				Types, Modalities.
				CO4: Preparatory Techniques, Frequently asked
				questions, Mock Interviews.
16	I/II	BS1211	Engineering	CO1: The students entering into the
			chemistry lab	professional course have practically very little
				exposure to lab classes. The experiments
				introduce volumetric analysis; redox titrations
				with different indicators; EDTA titrations; then
				they are exposed to a few instrumental methods
				of chemical analysis. Thus at the end of the lab
				course, the student is exposed to different
				methods of chemical analysis and use of some
1				commonly employed instruments. They thus

				acquire some experimental skills
17	I/II	ES1208	Basic electrical &	CO1: Determine the ripple factor of half wave
			electronics	& full wave rectifiers.
			engineering lab	CO2:Draw the characteristics of PN junction
				diode & transistor
				CO3: Control the speed of dc shunt motor using
				Armature voltage and Field flux control
				methods.
				CO4: Estimate the efficiency and regulation at
				different load conditions.
18	II/I	BSC	Vector calculus &	CO1: Interpret the physical meaning of different
			Fourier transforms	operators such as gradient, curl and divergence
				CO2: Estimate the work done against a field,
				circulation and flux using vector calculus
				CO3: Apply the Laplace transform for solving
				differential equations.
				CO4: Find or compute the Fourier series of
				periodic signals.
				COS: Know and be able to apply integral
				expressions for the forwards and inverse Fourier
				transform to a range of non-periodic waveforms.
				CO6: Identify solution methods for partial
				differential equations that model physical
10	II/I	DCC	Machanica of	processes.
19	11/1	PCC-		col: Model & Analyze the behavior of basic
		NIC	solius	and support conditions based on principles of
				and support conditions based on principles of
				CO2. Understand the apply the concept of
				stress and strain to analyze and design structural
				members and machine parts under axial shear
				and bending loads moment and torsional
				moment
				CO3: Students will learn all the methods to
				analyze beams, columns, frames for normal.
				shear, and torsion stresses and to solve
				deflection problems in preparation for the
				design of such structural components. Students
				are able to analyze beams and draw correct and
				complete shear and bending moment diagrams
				for beams.
				CO4: Students attain a deeper understanding of
				the loads, stresses, and strains acting on a
				structure and their relations in the elastic
				behavior.
				CO5: Design and analysis of Industrial

				components like pressure vessels.
20	II/I	PCC-	Materials science	CO1: Understand the crystalline structure of
		ME	& metallurgy	different metals and study the stability of phases
				in different alloy systems.
				CO2: Study the behavior of ferrous and non
				ferrous metals and alloys and their application
				in different domains
				CO3: Able to understand the effect of heat
				treatment, addition of alloying elements on
				properties of ferrous metals.
				CO4: Grasp the methods of making of metal
				powders and applications of powder metallurgy
				CO5: Comprehend the properties and
				applications of ceramic, composites and other
21	TT/T	DCC		advanced methods.
21	11/1	PCC-	Production	COI: Able to design the patterns and core
		NIE	technology	CO2. Able to design the goting system for
				different metallic components
				CO3: Know the different types of
				manufacturing processes
				CO4· Be able to use forging extrusion
				processes
				CO5: Learn about the different types of welding
				processes used for special fabrication.
				CO6: Principles of explosive forming,
				electromagnetic forming, Electro hydraulic
				forming, and rubber pad forming, advantages
				and limitations.
22	II/I	PCC-	Thermodynamics	CO1: Basic concepts of thermodynamics.
		ME		CO2: Laws of thermodynamics.
				CO3: Concept of entropy.
				CO4: Property evaluation of vapors and their
				depiction in tables and charts.
				CO5: Evaluation of properties of perfect gas
	XX /X	DCC		mixtures.
23	11/1	PCC-	Machine drawing	CUI: Draw and represent standard dimensions
		ME		of unferent mechanical fasteners and joints and
				Couplings.
				different components
				CO3 : Assemble components of a machine part
				and draw the sectional assembly drawing
				showing the dimensions of all the components
				of the assembly as per bill of materials

	1			
				CO4: Select and represent fits and geometrical form of different moting parts in assembly
				drawings
				CO5: To propero monufacturing drawings
				indicating fits, toloronoos, surface finish and
				indicating fits, tolerances, surface finish and
24	TT/T	DCC	M - 4 - 11	Surface treatment requirements.
24	11/1	PCC-	Metanurgy&	COT: Preparation and study of the
		Labi	mechanics of	Microstructure of pure metals like fron, Cu and
			solids lab	Al.
				CO2: Preparation and study of the
				Microstructure of Mild steel, Medium carbon
				steels, High carbon steels.
				CO3: Study of the Micro Structures of Cast
				Irons.
				CO4: Study of the Micro Structures of Non-
				Ferrous alloys.
				CO5: Study of the Micro structures of Heat
				treated steels.
				CO6: Harden ability of steels by Jominy End
				Quench Test.
				CO7: To find out the hardness of various treated
				and untreated steels.
				CO8: Analyze the Direct tension test
				CO9: Analyze the Bending test.
				CO10: Analyze the Simple supported.
				CO11: Analyze the Cantilever beam.
				CO12: Analyze the Torsion test.
				CO13: Analyze the Hardness test.
				CO14: Analyze the Brinells hardness test.
				CO15: Analyze the Rockwell hardness test
				CO15: Analyze the Test on springs
				CO16: Analyze the Compression test on cube.
				CO18: Analyze the Impact test.
				CO19: Analyze the Punch shear test.
25	II/I	PCC-	Production	CO1: Student will able to study Study of deep
		Lab2	technology lab	drawing and extrusion operations, Basic powder
				compaction and sintering, TIG/MIG Welding,
				Resistance Spot Welding, Brazing and
				soldering, Plastic Molding Process.
				CO2: Student will able to Sand properties
				testing on Sieve analysis (dry sand), Clay
				content test, Moisture content test, Strength test
				(Compression test & Shear test), and
				Permeability test.
				CO3: Student will able to Mould preparation on
				Straight pipe, Bent pipe, dumble, Gear blank.

26	II/II	BSC	Complex variables & statistical methods	 CO1: apply Cauchy-Riemann equations to complex functions in order to determine whether a given continuous function is analytic. CO2: find the differentiation and integration of complex functions used in engineering problems. CO3::make use of the Cauchy residue theorem to evaluate certain integrals. CO4: apply discrete and continuous probability distributions. CO5: design the components of a classical hypothesis test. CO6: infer the statistical inferential methods based on small and large sampling tests.
27	ΙΙ/ΙΙ	PCC- ME	Kinematics of machinery	 CO1: Contrive a mechanism for a given plane motion with single degree of freedom. CO2: Suggest and analyze a mechanism for a given straight line motion and automobile steering motion. CO3: Analyze the motion (velocity and acceleration) of a plane mechanism. CO4: Suggest and analyze mechanisms for a prescribed intermittent motion like opening and closing of IC engine valves etc. CO5: Select a power transmission system for a given application and analyze motion of different transmission systems.
28	II/II	PCC- ME	Applied thermodynamics	 CO1: Expected to learn the working of steam power cycles and also should be able to analyze and evaluate the performance of individual components. CO2: Student is able to learn the principles of combustion stochiometry and flue gas analysis. CO3: Students will be able to design the components and calculate the losses and efficiency of the boilers, nozzles and impulse turbines. CO4: Students will be able to design the components and calculate the losses and efficiency of reactions turbines and condensers. CO5: Student is able to learn various types of compressors, principles of working and their performance evaluation.
29	Π/Π	PCC-	Fluid mechanics &	COI: The basic concepts of fluid properties.

		ME	hydraulic machines	CO2: The mechanics of fluids in static and
				dynamic conditions.
				CO3: Boundary layer theory, flow separation
				and dimensional analysis.
				CO4: Hydrodynamic forces of jet on vanes in
				different positions.
				CO5: Working Principles and performance
				evaluation of hydraulic pump and turbines.
30	II/II	PCC-	Metal cutting &	CO1: Learned the fundamental knowledge and
		ME	machine tools	principals in material removal process.
				CO2: Acquire the knowledge on operations in
				conventional, automatic, Capstan and turret
				lathes.
				CO3: capable of understanding the working
				principles and operations of shaping, slotting,
				planning, drilling and boring machines.
				CO4: able to make gear and keyway in milling
				machines and understand the indexing
				mechanisms.
				CO5: Understand the different types of
				unconventional machining methods and
				principles of finishing Processes.
31	II/II	PCC-	Design of machine	CO1: Calculate different stresses in the
		ME	members – I	machine components subjected to various static
				loads, failures and suitability of a material for an
				engineering application.
				CO2: Calculate dynamic stresses in the
				machine components subjected to variable
				loads.
				CO3: Design riveted, welded, bolted joints,
				keys, cotters and knuckle joints subjected to
				static loads and their failure modes
				CO4: Design the machine shafts and suggest
				suitable coupling for a given application.
				CO5: Calculate stresses in different types of
				springs subjected to static loads and dynamic
22	TT /TT	MC2201		
52	11/11	MC2201	Essence of Indian	COI: Understand the concept of Iraditional
			traditional	knowledge and its importance.
			knowledge	CU2: Know the need and importance of
				protecting traditional knowledge.
				the protection of traditional lynamic data
				CO4. Understand the concerts of Intelligeters
				CO4: Understand the concepts of Intellectual
				property to protect the traditional knowledge.
32	II/II	MC2201	Essence of Indian traditional knowledge	springs subjected to static loads and dynamic loads. CO1: Understand the concept of Traditional knowledge and its importance. CO2: Know the need and importance of protecting traditional knowledge. CO3: Know the various enactments related to the protection of traditional knowledge. CO4: Understand the concepts of Intellectual property to protect the traditional knowledge. CO5: Understand the traditional knowledge.

		1		
				CO6: Contrast and compare characteristics
				importance kinds of traditional knowledge.
				CO7: Analyze physical and social contexts of
				traditional knowledge.
				CO8: Evaluate social change on traditional
				knowledge.
				CO9: Know the need of protecting traditional
				knowledge.
				CO10: Apply significance of TK protection.
				CO11: Analyze the value of TK in global
				economy.
				CO12: Evaluate role of government.
				CO13: Understand TK and IPR.
				CO14: Apply systems of TK protection.
				CO15: Analyze legal concepts for the
				protection of TK.
				CO16: Evaluate strategies to increase the
	TT (TT	DCC		protection of TK.
33	11/11	PCC-	Machine tools lab	COI: The students are required to understand
		Lab6		the parts of various machine tools and operate
				them. They are required to understand the
				different shapes of products that can be
				produced on these machine tools.
				CO2: Able to learn machining economics.
				CO3: Able to operate lathe, drilling, milling,
- 22	TT / TT	DCC		etc.
33	11/11	PCC-	Fluid mechanics &	COI: To impart practical exposure on the
		Labs	Hydraulic	performance evaluation methods of various flow
			machinery lab	measuring equipment and hydraulic turbines
				and pumps.
				CO2: Able to perform the Pelton wheel,
				Kaplan Turbine, Single Stage Centrifugal Pump,
				venturimeter, Multi Stage Centrifugal Pump.
				CO3: Determination of loss of head due to
				sudden contraction in a pipeline.
3/	III/I	PCC	dynamics of	CO1: To compute the frictional losses and
54	111/1	ME	machinery	transmission in clutches, brakes and
		IVIL		dynamometers
				CO2. To determine the effect of gyroscopic
				couple in motor vehicles, shins and aero planes
				CO3: To analyze the forces in four her and
				slider crank mechanisms and design a flywhool
				CO4 . To determine the rotary unbalanced mass
				in reciproceting equipment
				CO5: To determine the unbalanced forces and

				couples in reciprocating and radial engines. CO6: To determine the natural frequencies of
				torsional and transverse vibrations.
35	III/I	PCC-	Design of machine	CO1: Select the suitable bearing based on the
		ME	members-II	application of the loads and predict the life of
				the bearing.
				CO2: Design of IC Engines parts.
				CO3: Design of power transmission elements
				such as gears, belts, chains, pulleys, ropes,
				levers and power screws.
				CO4: Design spur & helical gear for different
		200		engineering applications.
36	111/1	PCC-	Mechanical	CO1: Describe the construction and working
		ME	measurements &	principles of measuring instruments for
			metrology	select appropriate instrument for a given
				application
				CO2: Describe the construction and working
				principles of measuring instruments for strain.
				force, Torque, power, acceleration and Vibration
				and select appropriate instrument for a given
				application.
				CO3: Explain shaft basis system and hole basis
				systems for fits and represent tolerances for a
				given fit as per the shaft basis system and hole
				basis system and design limit gauges based on
				the Talaran and fan avality shaely in mass
				rolerances for quanty check in mass
				CO4: Explain methods for linear angle and
				flatness measurements and select a suitable
				method and its relevant instrument for a given
				application.
				CO5: To measure the threads, gear tooth
				profiles, surface roughness and flatness using
				appropriate instruments and analyze the data.
37	III/I	HSIMS	Managerial	CO1: The Learner is equipped with the
			economics and	knowledge of estimating the Demand and
			tinancial	demand elasticity's for a product.
			accountancy	UU2: The Knowledge of understanding of the
				of the least cost combination of inputs
				CO3: The pupil is also ready to understand the
				nature of different markets and Price Output
				determination under various market conditions

				and also to have the knowledge of different Business Units. CO4: The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis. CO5: The Learner can able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making.
38	III/I	PCC- ME	IC Engines & Gas Turbines	 CO1: Derive the actual cycle from fuel-air cycle and air- standard cycle for all practical applications. CO2: Explain working principle and various components of IC engine CO3: Explain combustion phenomenon of CI and SI engines and their impact on engine variables. CO4: Analyze the performance of an IC engine based on the performance parameters. CO5: Explain the cycles and systems of a gas turbine and determine the efficiency of gas turbine. CO6: Explain the applications and working principle of rockets and jet propulsion.
39		PCC- Lab	Thermal engineering lab	 CO1:I.C. Engines valve and port timing diagrams. CO2: Testing of Fuels – Viscosity, flash point/fire point, carbon residue, calorific value. CO3:I.C. Engine performance test and Exhaust emission measurements (4 -stroke diesel engine) CO4:I.C. Engine performance test and Exhaust emission measurements (2-stroke petrol engine) CO5: Evaluation of friction power by conducting Morse test on 4-stroke multi cylinder engine. CO6: Determination of Friction Power by retardation or motoring test on IC engine. CO7:I.C. Engine heat balance at different loads and show the heat distribution curve. CO8: Economical speed test of an IC engine. CO9: Performance test on variable compression ratio engines. CO10: Performance test on reciprocating air compressor unit. CO11:Dis-assembly / assembly of different parts of two wheelers. 3 wheelers & 4 wheelers.

-	-			
				Tractor & Heavy duty engines covering 2-stroke
				and 4 stroke, SI and CI engines.
				CO12: Study of boilers, mountings and
				accessories.
40	III/I	PCC-	Theory of	CO1: To determine whirling speed of shaft
		Lab	machines lab	theoretically and experimentally.
				CO2: To determine the position of sleeve
				against controlling force and speed of a Hartnell
				governor and to plot the characteristic curve of
				radius of rotation.
				CO3: To analyze the motion of a motorized
				gyroscope when the couple is applied along its
				spin axis
				CO4: To determine the frequency of undamped
				free vibration of an equivalent spring mass
				system.
				CO5: To determine the frequency of damped
				force vibration of a spring mass system
				CO6: To study the static and dynamic balancing
				using rigid blocks.
				CO7: To find the moment of inertia of a
				flywheel
				CO8: To plot follower displacement vs cam
				rotation for various Cam Follower systems.
				CO9: To plot slider displacement, velocity and
				acceleration against crank rotation for single
				slider crank mechanism/Four bar mechanism.
				CO10: To find coefficient of friction between
				belt and pulley.
				CO11: To study simple and compound screw
				jack and determine the mechanical advantage,
				velocity ratio and efficiency.
				CO12: To study various types of gears- Spur,
				Helical, Worm and Bevel Gears.
41	III/I	PCC-	Mechanical	CO1: Student will become familiar with the
		Lab	measurements &	different instruments that are available for
			metrology lab	linear, angular, roundness and roughness
				measurements they will be able to select and use
				the appropriate measuring instrument according
				to a specific requirement (in terms of accuracy,
				etc).
				CO2: Students will be able to select proper
				measuring instrument and know requirement of
				calibration, errors in measurement etc. They can
				perform accurate measurements.
42	III/II	PCC-	Operations	CO1: Formulate the resource management

		ME	research	problems and identify appropriate methods to
				solve them.
				CO2: Apply LPP, transportation and
				assignment models to optimize the industrial
				resources.
				CO3: Solve decision theory problems through
				the application of game theory.
				CO4: Apply the replacement and queuing
				models to increase the efficiency of the system.
				CO5: Model the project management problems
				through CPM and PERT.
43	III/II	PCC-	Heat transfer	CO1: Compute rate of heat transfer for 1D,
		ME		steady state composite systems without heat
				generation.
				CO2: Analyze the system with heat generation,
				variable thermal conductivity, fins and 1D
				transient conduction heat transfer problems.
				CO3: Develop the empirical equations for
				forced convection problems by using
				Buckingham's pi theorem.
				CO4: Compute the rate of heat transfer for
				natural convection systems and design and
				analysis of heat exchangers.
				CO5: Solve the heat transfer systems with
				phase change and radiation.
44	III/II	PCC-	CAD/CAM	CO1: Describe the mathematical basis in the
		ME		technique of representation of geometric entities
				including points, lines, and parametric curves,
				surfaces and solid, and the technique of
				transformation of geometric entities using
				transformation matrix.
				CO2: Describe the use of GT and CAPP for the
				product development.
				CO3: Identify the various elements and their
				activities in the Computer Integrated
				Manufacturing Systems.
45	III/II	PEC-	Composite	CO1: Explain various composite materials with
		ME1	Materials	their constituents, advantages, limitations and
				applications.
				CO2: Enumerate different reinforcements with
				their application.
				CO3: Describe various manufacturing methods
				of polymer and metal matrix composites
				materials.
				CO4: Describe various manufacturing methods
				of metal matrix composites materials and their

				applications. CO5: synthesis and characterization procedure nano composites.
46	III/II	PEC- ME1	Refrigeration and air conditioning	CO1: Differentiate between different types of refrigeration systems with respect to engineering applications. CO2: Thermodynamically analyze refrigeration
				and air conditioning systems and evaluate performance parameters. CO3: Apply the principles of Psychometrics to design the air conditioning loads for the industrial applications. CO4: Perform cooling load calculations and select the appropriate process and equipment for the required comfort and industrial air- conditioning.
47	III/II	PEC- ME1	Unconventional Machining Processes	 CO1: Understand the characteristics and importance of different types of unconventional machining processes. CO2: Identify the appropriate unconventional machining process for the implementation in a typical industrial scenario based on the applications. CO3: Understand the significance of tools and resources used for machining the components in unconventional machining. CO4: Machine the components through ECM / EDM and other machining processes. CO5: Perform experiments in the advanced unconventional machining and electron beam machining.
48	III/II	PEC- ME1	Advanced mechanics of solids	 CO1: Able to identify the failure modes of different structural members and apply various energy methods for statically determinant and in determinant structures. CO2: Gets acquainted with solving problems of curved beams and beams with un-symmetrical loading. CO3: Able to apply the Soap-film analogy concept for torsional problems with non-circular cross section.
49	III/II	PEC- ME2	Material characterization	CO1: choose and appropriate electron microscopy techniques to investigate microstructure of materials at high resolution CO2: Determine crystal structure of specimen

				and estimate its crystallite size
				CO3: Use appropriate spectroscopic technique
				to measure vibration / electronic transitions to
				estimate parameters like energy hand gap
				elemental concentration, etc.
				CO4: Apply thermal analysis techniques to
				determine thermal stability of and
				thermodynamic transitions of the specimen.
50	III/II	PEC-	Tribology	CO1: Students will demonstrate basic
		ME2	85	understanding of friction. lubrication and wear
				rocesses.
				CO2: Students will become familiar with
				mathematical tools used to analyze tribological
				processes.
				CO3: To enhance students' awareness of
				tribological issues in the design of machine
				components, such as rolling element bearings,
				journal bearings, thrust bearings, seals and
				braking systems.
				CO4: Students will become familiar with
				common anti-friction and anti-wear components
				and the lubricants used therein.
				CO5: Students will be able to describe the
				detailed operation of selected anti-friction or
				anti-wear components.
				CO6: Students will be exposed to design a
				tribological system for optimal performance.
				CO7: Students will be able to develop technical
				project reports and technical presentations
51	III/II	PEC-	Automobile	CO1: Describe the basic lay-out of an
		ME2	engineering	automobile and its components and enlist the
				emission standards of an automobile.
				CO2: Describe different engine cooling,
				lubrication, ignition, electrical and air
				conditioning systems and suggest suitable
				systems for a given application.
				CO3: Explain the principles of transmission,
				suspension, steering and braking systems.
				CU4: Describe various fuel supply systems in
50	TTT /TT	DEC		SI and CI engines.
52	111/11	PEC-	Mechatronics	COI: Shall be able to use the various
		ME2		mechatronics systems devices and components
				in the design of electro mechanical systems.
				UU2: Explain mechatronics design process and
				outline appropriate sensors and actuators for
1	1	1		engineering applications

	[CO2. Develop a simulation model for simula
				CO3: Develop a simulation model for simple
				physical systems
				CO4: write simple microcontroller programs.
				COS: Explain linearization of nonlinear systems
				and elements of data acquisition.
				CO6: Explain various applications of design of
				mechatronic systems.
53	III/II	PCC-	Simulation of	CO1: Students will be able to learn Mass-
		Lab	mechanical	Spring-Damper with controller.
			systems lab	CO2: Students will be able to learn Double
				Mass-Spring- Damper.
				CO3: Students will be able to learn Simple
				Mechanical System.
				CO4: Students will be able to learn Mechanical
				System with Translational Friction.
				CO5: Students will be able to learn Mechanical
				System with Translational Hard stop.
				CO6: Students will be able to learn Mechanical
				Rotational System with stick-slip motion.
				CO7: Students will be able to learn Linkage
				Mechanism.
				CO8: Students will be able to learn Steering
				Mechanism.
54	III/II	PCC-	Heat transfer lab	CO1: The student should be able to evaluate the
		Lab		amount of heat exchange for plane, cylindrical
				& spherical geometries and should be able to
				compare the performance of extended surfaces
				and heat exchangers.
				CO2: Determination of emissivity of a given
				surface.
				CO3: Determination of Stefan Boltzmann
				constant.
				CO4: Determination of heat transfer rate in
				drop and film wise condensation.
				CO5: Determination of critical heat flux.
				CO6: Determination of Thermal conductivity
				of liquids and gases.
				CO7: Investigation of Lambert's cosine law.
55	III/II	PCC-	CAD/CAM lab	CO1: The student will be able to appreciate the
		Lab		utility of the modeling tools in creating 2D and
				3D drawings.
				CO2: Use of these tools for any engineering and
				real time applications.
				11
1				
				CO3: Acquire knowledge on utilizing these
				well as they will be prepared to handle industry problems with confidence when it matters to use
----	------	------------	---------------------------	---
				these tools in their Employment.
56	IV/I	HSIMS	Industrial management	 CO1:Design and conduct experiments, analyse, interpret data and synthesize valid conclusions CO2: Design a system, component, or process, and synthesize solutions to achieve desired needs. CO3: Use the techniques, skills, and modern engineering tools necessary for engineering practice. CO4: With appropriate considerations for public health and safety, cultural, societal, and environmental constraints. CO5:Function effectively within multidisciplinary teams and understand the fundamental precepts of effective project
				management.
57	IV/I	PCC- ME	Finite element methods	 CO1: Understand the concepts behind variational methods and weighted residual methods in FEM CO2: Identify the application and characteristics of FEA elements such as bars, beams, plane and isoperimetric elements, and 3-D element. CO3: Develop element characteristic equation procedure and generate global equations. CO4: Able to apply Suitable boundary conditions to global equations, and reduce it to a solvable form. CO5: Able to apply the FE procedure to field problems like heat transfer.
58	IV/I	PEC-3	Mechanical vibrations	 CO1:To Analyze the various 1-D periodic and periodic responses of an vibrating system with and without damping CO2:Able to derive equations of motion and solutions for two and multi degree freedom systems by the application of analytical methods CO3: Able to understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems. CO4: Apply the knowledge of the various physical vibration measuring instruments and their applications in real life vibration data acquisition.
59	IV/I	PEC-3	Renewable energy	CO1: To understand the principles and working

			sources	of solar, wind, biomass, geo thermal, ocean
				energies.
				CO2: To understand the principles and working
				and green energy systems and appreciate their
				significance in view of their importance in the
				current scenario and their potential future
				applications.
60	IV/I	PEC-3	Production	CO1: Apply the systems concept for the design
			planning & control	of production and service systems.
				CO2: Make forecasts in the manufacturing and
				service sectors using selected quantitative and
				qualitative techniques.
				CO3: Apply the principles and techniques for
				planning and control of the production and
				service systems to optimize/make best use of
				resources.
				CO4: Understand the importance and function
				of inventory and to be able to apply selected
				techniques for its control and management
				under dependent and independent demand
				circumstances.
61	IV/I	PEC-3	Machine tool	CO1: Understand the basic working principles
			design	of different machine tools with kinematic
				mechanisms.
				CO2: Distinguish the functional and operational
				requirements of different machine tools.
				CO3: Design speed and feed gear boxes for a
				particular configuration.
				CO4: Design machine tool structures for
				strength and rigidity.
				CO5: Understand various controls used in
				machine tools.
62	IV/I	PEC-4	Industrial	CO1: Identify various robot configuration and
			automation and	components.
			robotics	CO2: Select appropriate actuators and sensors
				for a robot based on specific application.
				CO3: Carry out kinematic and dynamic analysis
				for simple serial kinematic chains.
				CO4: Perform trajectory planning for a
				manipulator by avoiding obstacles.
				sutemption in manufacturing applications
62	T77/T	DEC 4	Miano and name	automation in manufacturing applications.
05	1 V / I	ree-4	monufacturing	used in miero and none manufacturing
			manufacturing	used in finition and nano manufacturing.
				course in-depin idea of thin films and hand
				composites

				CO3 : get awareness on Characterization
				Techniques
				CO4: find different materials for Micro and
				Nano mechanical systems and their applications
				in mechanical engineering.
				CO5: Explain different MEMS & Nano
				fabrication Techniques.
64	IV/I	PEC-4	Power plant	CO1: Understand various conventional methods
			engineering	of power generation.
				CO2: To understand the principle of operation
				and performance of respective prime movers
				along with their economics and their impact on
				environment.
				CO3: To understand the power plant
				instrumentation and control.
65	IV/I	PEC-4	Optimization	CO1: Students at the end of the course learn
			techniques	advanced optimization techniques to solve real-
				life problems.
				CO2: Students can able to formulate and solve
				various practical optimization problems in
				manufacturing and service organizations.
66	IV/I	OEC-1	Micro electro	CO1: After completion of this course, the
			mechanical	student shall be able to understand various
			systems	micro electro mechanical system devices and
				components.
67	IV/I	OEC-1	Operations	CO1: Identify the elements of operations
			management	management and various transformation
				processes to enhance productivity and
				competitiveness.
				CO2: Analyze plant and process layout.
				CO3: Develop aggregate capacity plans and
60	TT 7 /T			MPS in operation environments.
68	1V/1	OEC-1	Nano technology	COI: Learn the basic concepts of
				nanotechnology.
				CO2: Understand the synthesis of nanomaterials
				and their application.
				Nonemeterial's
60	T77/T	DCC	Finite clament	National CO1: Determination of deflection and strasses
09	1 V / I	PCC- ME	simulation lab	in 2D and 2D trusses and beams
		Lab	Simulation lab	III 2D and 3D musses and deallis.
		Lau		and principal and Von-misses stresses in plane
				CO3. stress plane strain and Av symmetric
				components
				CO4 :Determination of stresses in 3D and shell
				structures (at least one example in each case)
68	IV/I IV/I	OEC-1 PCC- ME Lab	Management Nano technology Finite element simulation lab	 management and various transformation processes to enhance productivity and competitiveness. CO2: Analyze plant and process layout. CO3: Develop aggregate capacity plans and MPS in operation environments. CO1: Learn the basic concepts of nanotechnology. CO2: Understand the synthesis of nanomaterials and their application. CO3: Apply their learned knowledge to develop Nanomaterial's. CO1: Determination of deflection and stresses in 2D and 3D trusses and beams. CO2:Determination of deflections component and principal and Von-misses stresses in plane CO3: stress, plane strain and Ax symmetric components. CO4:Determination of stresses in 3D and shell structures (at least one example in each case)

				CO3: Estimation of natural frequencies and mode shapes. Harmonic response of 2D beam
				CO6: Casting processes - Study of
				Solidification temperatures Residual stresses
				metallurgical phases etc
				CO7: Forging processes - Study of cold
				working and hot working processes for
				extrusion. drawing, rolling, etc.
				CO8: Forming Processes – Study of blanking,
				bending, deep drawing, etc.
				CO9: Steady state heat transfer Analysis of
				plane and Ax symmetric components.
				CO10: Convective heat transfer – Internal flow
				(study both velocity and thermal boundary
				layers)
				CO11: Convective heat transfer – External flow
				(study both velocity and thermal boundary
				layers).
70	TT 7 /TT	DEG 5	A 11.	CO12: Radiation heat transfer– Emissivity.
/0	1V/11	PEC-5	Additive	COI: The student shall be able to identify the
			manufacturing	use of Rapid Prototyping Techniques in the
				atherwise very difficult to menufacture
				otherwise very difficult to manufacture.
71	IV/II	PEC-5	Gas dynamics and	CO1: Illustrate fluid flow systems.
			jet propulsion	CO2: Analyze the isotropic flow of an ideal gas
				and its parameter.
				CO3: Study simple frictional flow with heat
				transfer problems.
				CO4: Analyze the impact of heat transfer on
				flow parameters.
				CO5: Performance evaluation of different
				propulsion systems.
72	IV/II	PEC-5	Product design and	CO1: Apply the principles of generic
			development	development process; conduct customer need
				analysis; and set product specification for new
				CO2: Concrete select screen and test concerts
				CO2: Generate, select, screen, and test concepts
				CO3. Apply the principles of product
				architecture and industrial design to design and
				develop new products
				CO4: Apply the principles of DFMA and
				Prototyping to design and develop new product

				CO5: Apply the concepts of economics
				principles sustainable product development and
72		DEC 5	Daliability	Ine cycle assessment.
15	1 V / 11	PEC-3	anginooring	Engineering and its Understand measures
			engineering	CO2: Dradict the Paliability at system level
				using various models
				CO3: Design the test plan to meet the reliability
				Requirements
				CO 4: Predict and estimate the reliability from
				failure data.
				CO5: Develop and implement a successful
				Reliability programme.
74	IV/II	PEC-6	Condition	CO1: understand the types of maintenance used
			monitoring	and its significance, role of condition based
				maintenance in industries, familiarize with
				different condition monitoring techniques and
				its advantages in industries.
				CO2: implement the basic signal processing
				techniques.
				CO3: understand the role of vibration
				monitoring, its methodology and its use in
				condition monitoring of rotating and
				reciprocating machines.
				CO4: understand the significance of mechanical
				tault diagnosis and non-destructive testing
				CO5 -study condition monitoring of rolling
				element bearing gears and tool condition
				monitoring techniques
				in machining.
75	IV/II	PEC-6	Computational	CO1: After undergoing the course the student
			fluid dynamics	shall be able to apply various numerical tools
				like finite volume, finite difference etc for
				solving the different fluid flow heat transfer
				problems.
76	IV/II	PEC-6	Non - destructive	CO1: Comprehensive, theory based
			evaluation	understanding of the techniques and methods of
				non destructive testing.
				CO2: Apply methods knowledge of non
				destructive testing to evaluate products of
				industries etc
77	IV/II	PFC-6	Control systems	CO1 : Derive the transfer function of physical
	1 1/11		Control systems	systems and determination of overall transfer
				function using block diagram algebra and signal

				flow graphs. CO2: Determine time response specifications of second order systems and to determine error constants. CO3: Analyze absolute and relative stability of LTI systems using Roth's stability criterion and the root locus method. CO4: Analyze the stability of LTI systems using frequency response methods. CO5: Represent physical systems as state models and determine the response. Understanding the concepts of controllability and observability.
78	IV/II	PEC-6	Entrepreneurship development	CO1:Gain the competency of preparing business plans CO2:Get the awareness on industrial policies CO3:Study the impact of launching small business CO4: Understand the recourse planning and market selection for start ups.
79	IV/II	OEC-2	Hydrogen & fuel cells	CO1: Students gets exposure to different fuel cells in particularly Hydrogen fuel cells.
80	IV/II	OEC-2	Robotics	 CO1: Understand the basic components of robots. CO2: Differentiate types of robots and robot grippers. CO3: Model forward and inverse kinematics of robot manipulators. CO4: Analyze forces in links and joints of a robot. CO5: Programme a robot to perform tasks in industrial applications. CO6: Design intelligent robots using sensors.
81	IV/II	OEC-2	Energy management	 CO1:Explain the fundamentals of energy management and its influence on environment CO2: Describe methods of energy production for improved utilization. CO3: Apply the principles of thermal engineering and energy management to improve the performance Of thermal systems. Analyze the methods of energy conservation and energy efficiency for buildings, air-conditioning, heat recovery and thermal energy storage systems. CO4: Assess energy projects on the basis of economic and financial criteria

82	IV/II	OEC-2	3D printing	CO1: Describe various CAD issues for 3D
			technologies	printing and rapid prototyping and related
				operations for STL model manipulation.
				CO2: Formulate and solve typical problems on
				reverse engineering for surface reconstruction
				from physical prototype models through
				digitizing and spline-based surface fitting.
				CO3: Formulate and solve typical problems on
				reverse engineering for surface reconstruction
				from digitized mesh models through topological
				modeling and subdivision surface fitting.
				CO4: Explain and summarize the principles and
				key characteristics of additive manufacturing
				technologies and commonly used 3D printing
				and additive manufacturing systems.
				tooling processes for quick batch production of
				plastic and metal parts
02		OEC 2	Total quality	CO1 : To realize the importance of significance
65	1 V/11	UEC-3	Total quality	of quality
			management	Of quality.
				CO2: Identify requirements of quality
				improvement programs.

HOD-MECHANICAL

KRISHNA CHAITANYA INSTITUTE OF TECHNOLOGY & SCIENCES Devarajugattu (Post), Peddaraveedu (Mandal), Prakasam Dist. - 523 320. (Approved by A.I.C.T.E., New Delhi, & Affiliated to JNTUK, Kakinada)

NAAC ACCREDITED INSTITUTION

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE OUTCOMES -ACADEMIC YEAR - 2017-2018

S.NO	Year /sem	Course code	Course Name	Course Outcomes (After completion of the course student can able to:)
1	I/I	HS1101	English	CO1: Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information CO2:Ask and answer general questions on familiar topics and introduce oneself/others CO3:Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information CO4:Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs CO5:Form sentences using proper grammatical structures and correct word forms
2	I/I	BS1101	Mathematics - I	CO1:Utilize mean value theorems to real life problems (L3) CO2:Solve the differential equations related to various engineering fields(L3) CO3:Familiarize with functions of several variables which is useful in optimization(L3) CO4:Apply double integration techniques in evaluating areas bounded by region(L3) CO5: Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

3	I/I	BS1106	Applied Chemistry	 CO1: Outline the properties of polymers and various additives added and different methods of forming plastic materials. Explain the preparation, properties and applications of some plastic materials. Interpret the mechanism of conduction in conducting polymers. Discuss natural and synthetic rubbers and their applications CO2: Explain the theory of construction of battery and fuel cells. Categorize the reasons for corrosion and study some methods of corrosion control. CO3: Understand the importance of materials like nano materials and fullerenes and their uses. Understand liquid crystals and superconductors. Understand the preparation of semiconductors. CO4: Obtain the knowledge of computational chemistry Understand the principles of different analytical instruments explain the different applications of analytical instruments. design sources of energy by different natural sources.
4	I/I	ES1101	Programming for Problem Solving Using C	CO1:To write algorithms and to draw flowcharts for solving problems CO2: To convert flowcharts/algorithms to C Programs, compile and debug programs CO3: To use different operators, data types and write programs that use two-way/ multi-way selection

				CO4: To select the best loop construct for a given problem To design and implement programs to analyze the different pointer applications CO5: To decompose a problem into functions and to develop modular reusable code To apply File I/O operations
5	I/I	ES1103	Engineering Drawing	The student will learn how to visualize 2D & 3D objects
6	I/I	HS1102	English Lab	 CO1: The student will learn Vowels, Consonants, Pronunciation, and Phonetic Transcription. CO2: The student will learn Past tense markers, word stress-di-syllabic words, Poly-Syllabic words CO3: The student will learn Rhythm & Intonation and Contrastive Stress.
7	I/I	BS1107	Applied Chemistry Lab	CO1: The students entering into the professional course have practically very little exposure to lab classes. CO2: The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. CO3: Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.
8	I/I	ES1102	Programming for Problem Solving Using C Lab	 CO1: Gains Knowledge on various concepts of a C language. CO2: Able to draw flowcharts and write algorithms. CO3: Able design and development of C problem solving skills. CO4: Able to design and develop modular programming skills.

				CO5: Able to trace and debug a program
9	I/I	MC1101	Environmental Science	CO1: understand multi disciplinary nature of Environmental studies and eco system Co2: understand about Natural resources and associated problems. CO3: understand about Biodiversity and its conservation CO4: understand about Environmental Pollution &Solid Waste Management CO5: Understand about Social Issues and the Environment CO6:understand about Environmental Management
10	I/II	BS1202	Mathematics – II	CO1:develop the use of matrix algebra techniques that is needed by engineers for practical applications(L6) CO2:solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel(L3) CO3:evaluate approximating the roots of polynomial and transcendental equations by different algorithms(L5) CO4:apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals(L3) CO5:apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations(L3)
11	I/II	BS1203	Mathematics – III	 CO1:interpret the physical meaning of different operators such as gradient, curl anddivergence (L5) CO2: estimate the work done against a field, circulation and flux using vector calculus(L5) CO3:apply the Laplace transform for solving differential equations(L3) CO4:find or compute the Fourier series of periodic signals(L3)

				CO5: know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms(L3)CO6: identify solution methods for partial differential equations that model physical processes (L3)
12	I/II	BS1204	Applied Physics	 CO1: Explain the need of coherent sources and the conditions for sustained interference. Analyze the differences between interference and diffraction with applications. Illustrate the resolving power of various optical instruments CO2: Explain the fundamental concepts of quantum mechanics. Analyze the physical significance of wavefunction. Apply Schrödinger's wave equation for energy values of a free particle. CO3: Explain the various electron theories. Calculate the Fermi energy. Analyze the physical significance of wave function. Interpret the effects of temperature on Fermi Dirac distribution function. Summaries various types of solids based on band theory. CO4: Classify the energy bands of semiconductors. Outline the properties of n-type and p-type semiconductors. Identify the type of semiconductor using Hall effect.

				 CO5: Explain the concept of polarization in dielectric materials. Summarize various types of polarization of dielectrics. Interpret Lorentz field and Claussius- Mosotti relation in dielectrics. Classify the magnetic materials based on susceptibility and their temperature dependence. Explain the applications of dielectric and magnetic materials. Apply the concept of magnetism to magnetic devices.
13	I/II	ES1209	Network Analysis	 CO1:gain the knowledge on basic network elements CO2:will analyze the RLC circuits behavior in detailed. CO3: analyze the performance of periodic waveforms. CO4: gain the knowledge in characteristics of two port network parameters (Z,Y,ABCD,h &g). CO5:analyze the filter design concepts in real world applications
14	I/II	ES1211	Basic Electrical Engineering	 CO1: Able to explain the operation of DC generator and analyze the characteristics of DC generator. CO2: Able to explain the principle of operation of DC motor and analyze their characteristics. Acquire the skills to analyze the starting and speed control methods of DC motors. CO3: Ability to analyze the performance and speed – torque characteristics of a 3-phase induction motor and understand starting methods of 3-phase induction motor.

				CO4: Able to explain the operation of Synchronous Machines CO5":Capability to understand the operation of various special machines
15	I/II	ES1215	Electronic workshop	Students are able to identify the basic components, identify active elements like BJT,MOSFET,working of multimeters, testing of components, soldering practice, PCB layout design, study of CRO
16	I/II	ES1208	Basic Electrical Engineering Lab	CO1: Determine and predetermine the performance of DC machines and transformers CO2: Control the DC shunt machines CO3: Compute the performance of 1- phasetransformer. CO4: Perform tests on 3-phase induction motor and alternator to determine their performance characteristics.
20	II/I	PC	Electronic Devices and Circuits	 CO1: Apply the basic concepts of semiconductor physics. CO2: Understand the formation of p-n junction and how it can be used as a p-n junction as diode in different modes of operation. CO3: Know the construction, working principle of rectifiers with and without filters with relevant expressions and necessary comparisons. CO4: Understand the construction, principle of operation of transistors, BJT and FET with their V-I characteristics in different configurations CO5: Know the need of transistor biasing, various biasing techniques for BJT and FET and stabilization concepts with necessary expressions CO6: Perform the analysis of small signal low frequency transistor amplifier circuits using BJT and FET in different configurations

21	II/I	PC	Switching Theory and Logic Design	 CO1: Classify different number systems and apply to generate various codes. CO2: Use the concept of Boolean algebra in minimization of switching functions CO3: Design different types of combinational logic circuits. CO4: Apply knowledge of flip-flops in designing of Registers and counters CO5: The operation and design methodology for synchronous sequential circuits and algorithmic state machines. CO6: Produce innovative designs by modifying the traditional design techniques
22	II/I	PC	Signals and Systems	CO1: Differentiate the various classifications of signals and systems CO2: Analyze the frequency domain representation of signals using Fourier concepts CO3: Classify the systems based on their properties and determine the response of LTI Systems. CO4: Know the sampling process and various types of sampling techniques. CO5: Apply Laplace and z-transforms to analyze signals and Systems (continuous &discrete).
23	II/I	PC	Random Variables and Stochastic Processes	CO1:Mathematically model the random phenomena and solve simple probabilistic problems CO2:Identify different types of random variables and compute statistical averages of these random variables CO3:Characterize the random processes in the time and frequency domains CO4:Analyze the LTI systems with random inputs

24	II/I	ES	Object Oriented Programming through Java	CO1: Show competence in the use of the Java programming language in the development of small to medium-sized application programs that demonstrate professionally acceptable coding and performance standard CO2:Illustrate the basic principles of the object-oriented programming CO3:Demonstrate an introductory understanding of graphical user interfaces, multithreaded programming, and event- driven programming
25	II/I	HS	Managerial Economics & Financial Analysis	 CO1: The Learner is equipped with the knowledge of estimating the Demand and demand elasticity's for product. CO2: The knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs. CO3: The pupil is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units. CO4:The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis. CO5:The Learner can able to evaluate various investment project proposals with the help of capital budgeting techniques for decision-making
28	II/I	МС	Constitution of India	 CO1: Understand the concept of Indian constitution Apply the knowledge on directive principle of state policy Analyze the History, features of Indian constitution Evaluate Preamble Fundamental Rights and Duties

				CO2·
				 Understand the structure of Indian government Differentiate between the state and central government Explain the role of President and Prime Minister Know the Structure of supreme court and High court CO3: Understand the structure of state
				 Analyze the role Governor and Chief Minister Explain the role of state Secretariat Differentiate between structure and functions of state secretariat
				 CO4: Understand the local Administration Compare and contrast district administration role and importance Analyze the role of Myer and elected representatives of
				Municipalities Evaluate Zilla panchayat block level organisation CO5: • Know the role of Election Commission apply knowledge
				 Contrast and compare the role of Chief Election commissioner and Commissiononerate Analyze role of state election commission Evaluate various commissions of viz SC/ST/OBC and women
29	II/II	PC	Electronic Circuit Analysis	CO1: Design and analysis ofsmall signal high frequency transistor amplifier using BJT and FET. CO2: Design and analysis of multistage amplifiers using BJT and FET and Differential amplifier using BJT.

				CO3: Derive the expressions for frequency of oscillation and condition for oscillation of RC and LC oscillators and their amplitude and frequency stability concept. CO4:Know the classification of the power and tuned amplifiers and their analysiswith performance comparison.
30	II/II	PC	Linear Control Systems	 CO1: This course introduces the concepts of feedback and its advantages to various control systems CO2: The performance metrics to design the control system in time-domain and frequency domain are introduced. CO3: Control systems for various applications can be designed using time-domain and frequency domain analysis. CO4: In addition to the conventional approach, the state space approach for the analysis of control systems is also introduced
31	II/II	PC	Electromagnetic Waves and Transmission Lines	 CO1: Determine E and H using various laws and applications of electric & magnetic fields CO2: Apply the Maxwell equations to analyze the time varying behavior of EM waves CO3: Gain the knowledge in uniform plane wave concept and characteristics of uniform plane wave in various media CO4: Calculate Brewster angle, critical angle and total internal reflection CO5: Derive and Calculate the expressions for input impedance of transmission lines, reflection coefficient, VSWR etc. using smith chart
32	II/II	PC	Analog Communications	CO1: Differentiate various Analog modulation and demodulation schemes and their spectral characteristics

				CO2: Analyze noise characteristics of various analog modulation methods CO3: Analyze various functional blocks of radio transmitters and receivers CO4: Design simple analog systems for various modulation techniques
33	II/II	ES	Computer Architecture and Organization	 CO1:Students can understand the architecture of modern computer CO2: They can analyze the Performance of a computer using performance equation CO3: Understanding of different instruction types. CO4: Students can calculate the effective address of an operand by addressing modes CO5: They can understand how computer stores positive and negative numbers. CO6: Understand the concepts of I/O Organization and Memory systems.
34	II/II	HS	Management and Organizational Behavior	 CO1: After completion of the Course the student will acquire the knowledge on management functions, global leadership and organizational structure. CO2: Will familiarize with the concepts of functional management that is HRM and Marketing of new product developments. CO3: The learner is able to think in strategically through contemporary management practices. CO4: The learner can develop positive attitude through personality development and can equip with motivational theories. CO5: The student can attain the group performance and grievance handling in managing the organizational culture.
37	III/I	PC	Linear Integrated Circuits and Applications	CO1: Design circuits using operational amplifiers for various applications.CO2: Analyze and design amplifiers and active filters using Op-amp.

				CO3: Diagnose and trouble-shoot linear electronic circuits.
				CO4: Understand the gain-bandwidth concept and frequency response of the amplifier configurations.
				CO5: Understand thoroughly the operational amplifiers with linear integrated circuits
38	III/I	PC	Microprocessor and Microcontrollers	 CO1: Understand the architecture of microprocessor/ microcontroller and their operation CO2: Demonstrate programming skills in assembly language for processors and Controllers. CO3: Analyze various interfacing techniques and apply them for the design of processor/Controller based systems
39	III/I	PC	Digital Communications	 CO1: Analyze the performance of a Digital Communication System for probability of error and are able to design a digital communication system. CO2: Analyze various source coding techniques. CO3: Compute and analyze Block codes, cyclic codes and convolution codes. CO4: Design a coded communication system
40	III/I	PC	Electronic Measurements & Instrumentation	CO1: Select the instrument to be used based on the requirements.CO2: Understand and analyze different signal generators and analyzers.CO3: Understand the design of oscilloscopes for different applications.CO4: Design different transducers for measurement of different parameters
41	III/I	PE	Professional Elective – Digital system design	CO1: Understand the architecture of

			using HDL	 FPGAs, tools used in modeling of digital design. CO2: Analyze and design basic digital circuits with combinatorial and sequential logic circuits using Verilog HDL. CO3: Model complex digital systems at several levels of abstractions. CO4: Design real time applications such as vending machine and washing machines etc
46	III/I	МС	Essence of Indian Traditional Knowledge	CO1:Understand the concept of Traditional knowledge and its importance CO2: Know the need and importance of protecting traditional knowledge CO3:Know the various enactments related to the protection of traditional knowledge CO4: Understand the concepts of Intellectual property to protect the traditional knowledge
47	III/II	PC	Wired and Wireless Transmission Devices	CO1: Identify basic antenna parameters Design and analyze wire antennas, loop antennas, reflector antennas, lens antennas, horn antennas and micro strip antennas CO3: Quantify the fields radiated by various types of antennas CO4: Design and analyze antenna arrays CO5: Analyze antenna measurements to assess antenna's performance CO6: Identify the characteristics of radio wave propagation
48	III/II	PC	VLSI Design	CO1: Demonstrate a clear understanding of CMOS fabrication flow and technology scaling ,Apply the design Rules and draw layout of a given logic circuit. Design MOSFET based logic circuit. CO2: Design basic building blocks in Analog IC design. Analyze the behavior of amplifier circuits with various loads. CO3:Design various CMOS logic circuits

				for design of Combinational logic circuits. Design amplifier circuits using MOS transistors. CO4: Design MOSFET based logic circuits using various logic styles like static and dynamic CMOS. Analyze the behavior of static and dynamic logic circuits. CO5: FPGA Design , Introduction To Advanced Technologies Like Metal Gate Technology, FinFet
49	III/II	PC	Digital Signal Processing	 CO1: Formulate engineering problems in terms of DSP operations CO2: Analyze digital signals and systems CO3: Analyze discrete time signals in frequency domain CO4: Design digital filters and implement with different structures CO5: Understand the key architectural
50	III/II	PE	Cellular Mobile communication	CO1: Identify the limitations of conventional mobile telephone systems; understand the concepts of cellular systems. CO2: Understand the frequency management, channel assignment strategies and antennas in cellular systems. CO3: Understand the concepts of handoff and architectures of various cellular systems
51	III/II	OE	MEMS and it's applications	 CO1: Understand the basic overview of MEMS and Microsystems with broad category of MEMS & Micro system applications. CO2: Understanding the working principles of Microsystems CO3: Understand the Scaling Laws in Miniaturization and Materials for MEMS and Microsystems CO4: Understand the Micro system Fabrication Process and Analyze the different Micro manufacturing process and Applications.

				CO5: Study and Analyze the different types of RF switches, Various Switching Mechanism and their applications
52	III/II	PC	Internet of Things	 CO1: Understand internet of Things and its hardware and software components. CO2: Interface I/O devices, sensors &communication modules. CO3: Remotely monitor data and control devices. CO4: Design real time IoT based applications
55	III/II	МС	Intellectual Property Rights (IPR) & Patents	CO1:IPR Laws and patents pave the way for innovative ideas which are instrumental for inventions to seek Patents CO2: Student get an insight on Copyrights, Patents and Software patents which are instrumental for further advancements CO3:advanced Technical and Scientific disciplines CO4: Imparting IPR protections and regulations for further advancement, so that the students can familiarize with the latest developments
56	IV/I	PC	Microwave and Optical Communication Engineering	CO1: Design different modes in waveguide structures CO2:Calculate S-matrix for various waveguide components and splitting the microwave energy in a desired direction CO3: Distinguish between Microwave tubes and Solid State Devices, calculation of efficiency devices. CO4: Measure various microwave parameters using a Microwave test bench
57	IV/I	PC	Data Communications & Computer networks	CO1: Know the Categories and functions of various Data communication Networks CO2: Design and analyze various error detection techniques. CO3:Demonstrate the mechanism of

				routing the data in network layer CO4: Know the significance of various Flow control and Congestion control Mechanisms CO5: Know the Functioning of various Application layer Protocols
58	IV/I	PC	Digital Image and Video Processing	 CO1: Defining the digital image, representation of digital image, importance of image resolution, applications in image processing. Know the advantages of representation of digital images in transform domain, application of various image transforms. CO2: Know how an image can be enhanced by using histogram techniques, filtering techniques etc Understand image degradation, image restoration techniques using spatial filters and frequency domain CO3: Know the detection of point, line and edges in images, edge linking through local processing, global processing. Understand the redundancy in images, various image compression techniques. CO4: Know the video technology from analog color TV systems to digital video systems, how video signal is sampled and filtering operations in video processing. CO5: Know the general methodologies for 2D motion estimation, various coding used in video processing.
59	IV/I	PE	ANALOG IC DESIGN	 CO1: Model and simulate different MOS Devices using small signal Model C Design and analyze any Analog Circuits in real time applications. CO3: Apply the concepts Analog Circuit Design to develop various Applications in Real Time. CO4: Analyze and compare different Open-Loop Comparators and Oscillators.
60	IV/I	PE	EMBEDDED	

			SYSTEMS	 CO1: Understand the basic concepts of an embedded system and able to know an embedded system design approach to perform a specific function. CO2: The hardware components required for an embedded system and the design approach of an embedded hardware. CO3: The various embedded firmware design approaches on embedded environment. CO4: Understand how to integrate hardware and firmware of an embedded system.
64	IV/II	PE	WIRELESS COMMUNICATION	 CO1:Know about the Wireless systems and Standards (1G/2G/3Gsystems). CO2: Concept and analysis of CDMA- based wireless networks. CO3: Understand the concepts of Multiple- Input Multiple-Output (MIMO). CO4: Understand the modern wireless systems using OFDM. CO5: Analysis of Satellite-Based Wireless systems
65	IV/II	OE	CYBER SECURITY & CRYPTOGRAPHY	CO1: Explain the computer forensics fundamentals. CO2:Describe the types of computer forensics technology CO3Analyze various computer forensics systems. CO4: Illustrate the methods for data recovery, evidence collection and data seizure.

KRISHNA CHAITANYA INSTITUTE OF TECHNOLOGY & SCIENCES

Devarajugattu (Post), Peddaraveedu (Mandal), Prakasam Dist. - 523 320. (Approved by A.I.C.T.E., New Delhi, & Affiliated to JNTUK, Kakinada) NAAC ACCREDITED INSTITUTION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE OUTCOMES -ACADEMIC YEAR -2017-2018

S.NO	Year	Course	Course Name	Course Outcomes
	/sem	code		(After completion of the course student can able to:)
1	I/I	HS1101	English	 CO1: understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information CO2: ask and answer general questions on familiar topics and introduce oneself/others CO3: employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information CO4: recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs CO5: form sentences using proper grammatical structures and correct word forms
2	1/1	BS1101	Mathematics -I	 CO1: Utilize mean value theorems to real life problems (L3) CO2: Solve the differential equations related to various engineering fields (L3) CO3: Familiarize with functions of several variables which is useful in optimization (L3) CO4: Apply double integration techniques in evaluating areas bounded by region (L3) CO5: Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)
3	1/1	BS1106	Applied Chemistry	 CO1: Outline the properties of polymers and various additives added and different methods of forming plastic materials. CO2: Interpret the mechanism of conduction in conducting polymers, natural and synthetic rubbers and their applications CO3: the theory of construction of battery and fuel cells, categorize the reasons for corrosion and study some methods of corrosion control. CO4: Understand the importance of materials like nanomaterials and fullerenes and their uses, liquid crystals and superconductors, semiconductors. CO5: knowledge of computational chemistry, molecular machines, principles and applications of analytical instruments.
4	I/I	ES1112	Fundamental s Of Computer	CO1 : Illustrate the concept of input and output devices of Computers and how it works and recognize the basic terminology used in computer programming.

			Science	CO2 : Recognize the Computer networks, types of networks and
				topologies.
				C03 : Summarize the concepts of Operating Systems and
				Databases.
				C04 : Recite the Advanced Computer Technologies like
				Distributed Computing & Wireless Networks.
E	1/1	EC1102	Engineering	CO1 : The student will learn how to visualize 2D & 3D objects.
5	1/1	E31103	Drawing	
				CO1 :Learners learn how to pronounce words using the rules they
				have been taught.
				CO2 : Students learn the importance of speaking English using
				rhythm and intonation.
				CO3 : Students learn to overcome stage fear and make
				presentations with ease.
6	1/1	HS1102	English Lab	CO4 : Students learn to use right words and phrases in keeping
_	,		0	the demands of occasion.
				CO5 : Students learn to face different types of interviews with
				confidence.
				COB : Students learn to participate in group discussions.
				CO7 : Students learn to distinguish informal speech from formal
				speech through role plays.
				CO8 . Students learn to use the telephone eliquettes
			col. The students entering into the professional course have	
		BS1107	Applied Chemistry Lab	CO2 : The experiments introduce volumetric analysis: redox
7	1/1			titrations with different indicators: EDTA titrations: then they are
,	.,.			exposed to a few instrumental methods of chemical analysis
				CO3 : The student is exposed to different methods of chemical
				analysis and use of some commonly employed instruments.
				CO1 : Assemble and disassemble components of a PC
				CO2 : Construct a fully functional virtual machine, Summarize
				various Linux operating system commands,
				CO3 : Secure a computer from cyber threats, Learn and practice
				programming skill in Github, Hackerrank, Code chef, Hacker
8	1/1	ES1105	IT Workshop	Earth etc.
				CO4 : Recognize characters & extract text from scanned images,
				Create audio files and podcasts
				CO5 : Create video tutorials and publishing, Use office tools for
				documentation, Build interactive presentations, Build websites,
				Create quizzes & analyze responses
				CO1 : Overall understanding of the natural resources.
				CO2 : Basic understanding of the ecosystem and its diversity.
_	1/1	MC1101	Environment	Los. Acquaintance on various environmental challenges
9	1/1	IVICITOI	al Science	nucceu que lo unplanneu antiropogenic activities.
				developmental activities
				COS : Awareness on the social issues, environmental logislation
9	ı/ı ı/ı	ES1105 MC1101	IT Workshop Environment al Science	 programming skill in Github, Hackerrank, Code chef, Hacker Earth etc. CO4: Recognize characters & extract text from scanned images, Create audio files and podcasts CO5: Create video tutorials and publishing, Use office tools for documentation, Build interactive presentations, Build websites, Create quizzes & analyze responses CO1: Overall understanding of the natural resources. CO2: Basic understanding of the ecosystem and its diversity. CO3: Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities. CO4: An understanding of the environmental impact of developmental activities. CO5: Awareness on the social issues, environmental legislation

				and global treaties.
10	1/11	BS1202	Mathematics - II	 CO1: develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6) CO2: solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3) CO3: evaluate approximating the roots of polynomial and transcendental equations by different algorithms (L5) CO4: apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3). CO5: apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations (L3)
11	1/11	BS1203	MATHEMATI CS - III	 CO1: Interpret the physical meaning of different operators such as gradient, curl and divergence (L5) CO2: Estimate the work done against a field, circulation and flux using vector calculus (L5) CO3: Apply the Laplace transform for solving differential equations (L3) CO3: Find or compute the Fourier series of periodic signals (L3) CO4: Know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms (L3) CO5: Identify solution methods for partial differential equations that model physical processes (L3)
12	1/11	BS1204	APPLIED PHYSICS	 CO1: The need of coherent sources and the conditions for sustained interference. CO2: analyze the physical significance of wave function, energy values of a free particle, electron theories, calculate the Fermi energy, physical significance of wave function . CO3: interpret the effects of temperature on Fermi Dirac distribution function, types of solids based on band theory, properties of n-type and p-type semiconductors, using Hall effect. CO4: summarize various types of polarization of dielectrics, classification of the magnetic materials based on susceptibility and their temperature dependence. CO5: the applications of dielectric and magnetic materials , Apply the concept of magnetism to magnetic devices.
13	1/11	ES1201	PROGRAMMI NG FOR PROBLEM SOLVING USING C	 CO1: write algorithms and to draw flowcharts for solving problems, convert flowcharts/algorithms to C Programs, compile and debug programs CO2: use different operators, data types and write programs that use two-way/ multi-way selection, to select the best loop construct for a given problem CO3: design and implement programs to analyze the different pointer applications. CO4: decompose a problem into functions and to develop modular reusable code.

				CO5: Apply File I/O operations.
				CO1 : An ability to define different number systems, binary
				addition and subtraction, 2's complement representation and
			operations with this representation.	
				CO2 : An ability to understand the different switching algebra
			DICITAL	theorems and apply them for logic functions.
		564242	DIGITAL	CO3 : An ability to define the Karnaugh map for a few variables
14	1/11	ES1213	LOGIC	and perform an algorithmic reduction of logic functions.
			DESIGN	CO4 : Students will be able to design various logic gates starting
				from simple ordinary gates to complex programmable logic
				devices & arrays.
				CO5: Students will be able to design various sequential circuits
				starting from flip-flop to registers and counters.
				CO1: Develop skills to impart practical knowledge in real time
				solution.
				CO2: Understand principle, concept, working and application of
				new technology and comparison of results with theoretical
				calculations.
15	1/11	ES1205	PHYSIC LAB	CO3 : Design new instruments with practical knowledge.
				CO4 : Gain knowledge of new concept in the solution of practical
				oriented problems and to understand more deep knowledge
				about the solution to theoretical problems.
				CO5: Understand measurement technology, usage of new
				instruments and real time applications in engineering studies.
			COMMUNICA	CO1 : Better pronunciation and accent
16	1/11	HS1203	TION SKILLS	CO2 : Ability to use functional English
			LAB	CO3 : Competency in analytical skills and problem solving skills
		ES1202	PROGRAMMI	CO1 : Gains Knowledge on various concepts of a C language.
47			NG FOR	CO2 : Able to draw flowcharts and write algorithms.
1/	1/11		PROBLEM	CO3 : Able design and development of C problem solving skills.
			SOLVING	CO4 : Able to design and develop modular programming skills.
				COS: Able to trace and debug a program
			ENGINEERIN	idoas
	1/11	PR1201		rucas
				CO2 . Use one or more creative tools to complete the projects
	1		NTROJECT	CO1 : Understand historical background of the constitution
				making and its importance for building a democratic India
				CO2 : Understand the functioning of three wings of the
				government ie., executive, legislative and judiciary
				CO3 : Understand the value of the fundamental rights and duties
	1/11	MC1204	CONSTITUTI	for becoming good citizen of India. analyze the decentralization
	1/11		ON OF INDIA	of power between central, state and local self-government.
				CO4 : Apply the knowledge in strengthening of the constitutional
				institutions like CAG, Election Commission and UPSC for
				sustaining democracy, features and principles of Indian
				Constitution, about Union Government, State government and

				its administration.
				CO5 : Get acquainted with Local administration and Pachavat Rai
				be aware of basic concents and developments of Human Rights
				gain knowledge on roles and functioning of Election Commission
				co1 : Demonstrate skills in solving methomatical problems
				CO1 : Demonstrate skins in solving mathematical problems
			MATHEMATI	CO2: Comprehend mathematical principles and logic
			CAL	CO3 : Demonstrate knowledge of mathematical modeling and
18	11/1	CS2101	FOUNDATIO	proficiency in using mathematical software
10	,.	002101	NS OF	CO4 : Manipulate and analyze data numerically and/or
			COMPUTER	graphically using appropriate Software
			SCIENCE	CO5 : Communicate effectively mathematical ideas/results
				verbally or in writing.
				CO1 : Ability to transform an Object-Oriented Design into high
			SOFTWARE	quality, executable code
19	11/1	CS2102	ENGINEERIN	CO2 : Skills to design, implement, and execute test cases at the
	-		G	Unit and Integration level
			_	CO3 : Compare conventional and agile software methods
				CO1 : Develop essential programming skills in computer
				programming concents like data types containers
		ES2101	PYTHON PROGRAMMI NG	CO2 : Apply the basics of programming in the Bythen language
20	11/1			CO2 . Apply the basics of programming in the Fythom language
	-			CO3 : Solve coding tasks related conditional execution, loops
				CO4 : Solve coding tasks related to the fundamental notions and
				techniques used in object-oriented programming
				CO1 : Summarize the properties, interfaces, and behaviors of
	11/1	CS2103	DATA STRUCTURES	basic abstract data types
				CO2 : Discuss the computational efficiency of the principal
21				algorithms for sorting & searching
				CO3 : Use arrays, records, linked structures, stacks, queues, trees,
				and Graphs in writing programs
				CO4: Demonstrate different methods for traversing trees
				CO1 : Classify object oriented programming and procedural
			OBJECT ORIENTED	programming
				CO2 : Apply C++ features such as composition of objects.
				operator overloads, dynamic memory allocation, inheritance and
22	11/1	CS2104	PROGRAMMI	nolymorphism file I/O exception handling
~~~	, .	052104	NG	<b>CO3</b> : Build C++ classes using appropriate encapsulation and
			THROUGH	design principles
			C++	<b>COA</b> : Apply object oriented or pop object oriented techniques to
				co4. Apply object oriented of non-object oriented techniques to
				CO1: Develop a detailed understanding of computer systems
				CO2: Cite different number systems, binary addition and
			COMPUTER	subtraction, standard, floating-point, and micro operations.
23	11/1	CS2105	ORGANIZATI	<b>CO3</b> : Develop a detailed understanding of architecture and
	,.		ON	functionality of central processing unit.
				<b>CO4</b> : Exemplify in a better way the I/O and memory organization
				CO5: Illustrate concepts of parallel processing, pipelining and
				inter processor communication

24	11/1	ES2102	PYTHON PROGRAMMI NG LAB	<ul> <li>CO1: Write, Test and Debug Python Programs</li> <li>CO2: Use Conditionals and Loops for Python Programs</li> <li>CO3: Use functions and represent Compound data using Lists,</li> <li>Tuples and Dictionaries</li> <li>CO4: Use various applications using python</li> </ul>
25	11/1	CS2106	DATA STRUCTURES THROUGH C++ LAB	<ul> <li>CO1: Apply the various OOPs concepts with the help of programs.</li> <li>CO2: Use basic data structures such as arrays and linked list.</li> <li>CO3: Programs to demonstrate fundamental algorithmic problems including Tree Traversals, Graph traversals, and shortest paths.</li> <li>CO4: Use various searching and sorting algorithms.</li> </ul>
26	11/1	MC2101	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	<ul> <li>CO1: Understand the concept of Traditional knowledge and its importance</li> <li>CO2: Know the need and importance of protecting traditional knowledge</li> <li>CO3: Know the various enactments related to the protection of traditional knowledge</li> <li>CO4: Understand the concepts of Intellectual property to protect the traditional knowledge</li> </ul>
27	11/1	MC2102	EMPLOYABILI TY SKILLS –I	<ul> <li>CO1: Establish effective communication with employers, supervisors, and co-workers</li> <li>CO2: Identify to explore their values and career choices through individual skill assessments</li> <li>CO3: Adapts positive attitude and appropriate body language</li> <li>CO4: Interpret the core competencies to succeed in professional and personal life</li> </ul>
28	11/11	BS2201	PROBABILITY AND STATISTICS	<ul> <li>CO1: Classify the concepts of data science and its importance (L4) or (L2)</li> <li>CO2: Interpret the association of characteristics and through correlation and regression tools (L4)</li> <li>CO3: Make use of the concepts of probability and their applications (L3)</li> <li>CO4: Apply discrete and continuous probability distributions (L3)</li> <li>CO5: Design the components of a classical hypothesis test (L6)</li> <li>CO6: Infer the statistical inferential methods based on small and large sampling tests (L4)</li> </ul>
29	11/11	CS2201	JAVA PROGRAMMI NG	<ul> <li>CO1: Able to realize the concept of Object Oriented Programming &amp; Java Programming Constructs</li> <li>CO2: Able to describe the basic concepts of Java such as operators, classes, objects, inheritance, packages, Enumeration and various keywords</li> <li>CO3: Apply the concept of exception handling and Input/ Output operations</li> <li>CO4: Able to design the applications of Java &amp; Java applet</li> <li>CO5: Able to Analyze &amp; Design the concept of Event Handling and Abstract Window Toolkit</li> </ul>

30	11/11	CS2202	OPERATING SYSTEMS	<ul> <li>CO1: Describe various generations of Operating System and functions of Operating System</li> <li>CO2: Describe the concept of program, process and thread and analyze various CPU Scheduling Algorithms and compare their performance</li> <li>CO3: Solve Inter Process Communication problems using Mathematical Equations by various methods</li> <li>CO4: Compare various Memory Management Schemes especially paging and Segmentation in Operating System and apply various Page Replacement Techniques</li> <li>CO5: Outline File Systems in Operating System like UNIX/Linux and Windows</li> </ul>
31	11/11	CS2203	DATABASE MANAGEME NT SYSTEMS	<ul> <li>CO1: Describe a relational database and object-oriented database</li> <li>CO2: Create, maintain and manipulate a relational database using SQL</li> <li>CO3: Describe ER model and normalization for database design</li> <li>CO4: Examine issues in data storage and query processing and can formulate appropriate solutions</li> <li>CO5: Outline the role and issues in management of data such as efficiency, privacy, security, ethical responsibility, and strategic advantage.</li> </ul>
32	11/11	CS2204	FORMAL LANGUAGES AND AUTOMATA THEORY	<ul> <li>CO1: Classify machines by their power to recognize languages. I Summarize language classes &amp; grammars relationship among them with the help of Chomsky hierarchy</li> <li>CO2: Employ finite state machines to solve problems in computing</li> <li>CO3: Illustrate deterministic and non-deterministic machines</li> <li>CO4: Quote the hierarchy of problems arising in the computer science</li> </ul>
33	11/11	CS2205	JAVA PROGRAMMI NG LAB	<ul> <li>CO1: Evaluate default value of all primitive data type, Operations, Expressions, Control-flow, Strings</li> <li>CO2: Determine Class, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism</li> <li>CO3: Illustrating simple inheritance, multi-level inheritance, Exception handling mechanism</li> <li>CO4: Construct Threads, Event Handling, implement packages, developing applets</li> </ul>
33	II/II	CS2206	UNIX OPERATING SYSTEM LAB	<ul> <li>CO1: To use Unix utilities and perform basic shell control of the utilities</li> <li>CO2: To use the Unix file system and file access control</li> <li>CO3: To use of an operating system to develop software</li> <li>CO4: Students will be able to use Linux environment efficiently</li> <li>CO5: Solve problems using bash for shell scripting</li> </ul>
34	11/11	CS2207	DATABASE MANAGEME	<b>CO1</b> : Utilize SQL to execute queries for creating database and performing data manipulation operations

			NT SYSTEMS	<b>CO2</b> : Examine integrity constraints to build efficient databases
			LAB	<b>CO3</b> : Apply Queries using Advanced Concepts of SQL
				<b>CO4</b> : Build PL/SOL programs including stored procedures
				functions, cursors and triggers
				<b>CO1</b> : Identify and analyze an ethical issue in the subject matter
				under investigation or in a relevant field
				<b>CO2</b> . Identify the multiple ethical interests at stake in a real-
				world situation or practice
				<b>CO3</b> : Articulate what makes a particular course of action
				ethically defensible
				<b>CO4</b> : Assess their own ethical values and the social context of
			PROFESSION	problems
35	11/11	MC2201	AL ETHICS &	<b>CO5</b> : Identify ethical concerns in research and intellectual
	,		HUMAN	contexts, including academic integrity, use and citation of
			VALUES	sources, the objective presentation of data, and the treatment of
				human subjects
				<b>CO6</b> : Demonstrate knowledge of ethical values in non-classroom
				activities, such as service learning, internships, and field work
				<b>CO7</b> : Integrate, synthesize, and apply knowledge of ethical
				dilemmas and resolutions in academic settings, including focused
				and interdisciplinary research.
			COCIALLY	<b>CO1</b> : Use scientific reasoning to gather, evaluate, and interpret
20	/	000001		ideas
30	11/11	PRZZUI		CO2: Analyze and design solutions to solve the ideas
			PROJECT	<b>CO3</b> : Use one or more creative tools to complete the projects
				<b>CO1</b> : Design a Data warehouse system and perform business
				analysis with OLAP tools
			DATA	<b>CO2</b> : Apply suitable pre-processing and visualization techniques
			WAREHOUSI	for data analysis
37	111/1	CS3101	NG AND	<b>CO3</b> :Apply frequent pattern and association rule mining
			DATA	techniques for data analysis
			MINING	<b>CO4</b> : Apply appropriate classification techniques for data
				analysis
				CO5: Apply appropriate clustering techniques for data analysis
				CO1: IIIustrate the OSI and TCP/IP reference model
20	111/1	CC2102	COMPUTER	CO2. Analyze MAC layer protocols and LAN technologies
38	111/1	C23102	NETWORKS	<b>CO3</b> : Design applications using internet protocols
				<b>COE</b> : Develop application layer protocols
				<b>CO1</b> : Design develop and implement a compiler for any
				language
				CO2. Use LEX and YACC tools for developing a scanner and a
			COMPILER	narser
39	111/1	CS3103	DESIGN	<b>CO3</b> : Design and implement 11 and 1R parsers
			2 Lordit	<b>CO4</b> : Design algorithms to perform code optimization in order to
				improve the performance of a program in terms of space and
				time complexity
	1			

				CO5: Apply algorithms to generate machine code
40	111/1	CS3104	ARTIFICIAL INTELLIGENC E	<ul> <li>CO1: Outline problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem</li> <li>CO2: Apply the language/framework of different AI methods for a given problem</li> <li>CO3: Implement basic AI algorithms- standard search algorithms or dynamic programming</li> <li>CO4: Design and carry out an empirical evaluation of different algorithms on problem formalization, and state the conclusions that the avaluation entry out an empirical evaluation of different algorithms or dynamic problem formalization.</li> </ul>
41	111/1	PE3101	Software Testing Methodologi es	<ul> <li>CO1: Identify and understand various software testing problems, apply software testing knowledge and engineering methods and solve these problems by designing and selecting software test models, criteria, strategies, and methods</li> <li>CO2: Design and conduct a software test process for a software project</li> <li>CO3: Analyze the needs of software test automation I Use various communication methods and skills to communicate with their teammates to conduct their practice-oriented software testing projects</li> <li>CO4: Basic understanding and knowledge of contemporary issues in software testing, such as component-based, web based and object oriented software testing problems</li> <li>CO5: Write test cases for given software to test it before delivery to the customer and write test scripts for both desktop and web based applications</li> </ul>
42	111/1	CS3105	COMPUTER NETWORKS LAB	<ul> <li>CO1: Apply the basics of Physical layer in real time applications</li> <li>CO2: Apply data link layer concepts, design issues, and protocols</li> <li>CO3: Apply Network layer routing protocols and IP addressing</li> <li>CO4: Implement the functions of Application layer and</li> <li>Presentation layer paradigms and Protocols</li> </ul>
43	111/1	CS3106	AI TOOLS & TECHNIQUES LAB	<ul> <li>CO1: Identify problems that are amenable to solution by AI methods</li> <li>CO2: Identify appropriate AI methods to solve a given problem</li> <li>CO3: Use language/framework of different AI methods for solving problems</li> <li>CO4: Implement basic AI algorithms</li> <li>CO5: Design and carry out an empirical evaluation of different algorithms on problem formalization, and state the conclusions that the evaluation supports</li> </ul>
44	111/1	CS3107	DATA MINING LAB	<ul> <li>CO1: Extend the functionality of R by using add-on packages</li> <li>CO2: Examine data from files and other sources and perform various data manipulation tasks on them</li> <li>CO3: Code statistical functions in R</li> <li>CO4: Use R Graphics and Tables to visualize results of various statistical operations on data</li> </ul>

				<b>CO5</b> : Apply the knowledge of R gained to data Analytics for real life applications
45	111/1	MC3101	EMPLOYABILI TY SKILLS -II	<ul> <li>CO1: Recite the corporate etiquette.</li> <li>CO2: Make presentations effectively with appropriate body language</li> <li>CO3: Be composed with positive attitude</li> <li>CO4: Apply their core competencies to succeed in professional and personal life</li> </ul>
46	111/11	CS3201	WEB TECHNOLOGI ES	<ul> <li>CO1: Illustrate the basic concepts of HTML and CSS &amp; apply those concepts to design static web pages</li> <li>CO2: Identify and understand various concepts related to dynamic web pages and validate them using JavaScript</li> <li>CO3: Outline the concepts of Extensible markup language &amp; AJAX</li> <li>CO4: Develop web Applications using Scripting Languages &amp; Frameworks</li> <li>CO5: Create and deploy secure, usable database driven web applications using PHP and RUBY</li> </ul>
47	111/11	CS3202	DISTRIBUTED SYSTEMS	<ul> <li>CO1: Elucidate the foundations and issues of distributed systems</li> <li>CO2: Illustrate the various synchronization issues and global state for distributed systems</li> <li>CO3: Illustrate the Mutual Exclusion and Deadlock detection algorithms in distributed systems</li> <li>CO4: Describe the agreement protocols and fault tolerance mechanisms in distributed systems</li> <li>CO5: Describe the features of peer-to-peer and distributed shared memory systems</li> </ul>
48	111/11	CS3202	DESIGN AND ANALYSIS OF ALGORITHMS	<ul> <li>CO1: Describe asymptotic notation used for denoting performance of algorithms</li> <li>CO2: Analyze the performance of a given algorithm and denote its time complexity using the asymptotic notation for recursive and non-recursive algorithms</li> <li>CO3: List and describe various algorithmic approaches</li> <li>CO4: Solve problems using divide and conquer, greedy, dynamic programming, backtracking and branch and bound algorithmic approaches</li> <li>CO5: Apply graph search algorithms to real world problems</li> <li>CO6: Demonstrate an understanding of NP- Completeness theory and lower bound theory</li> </ul>
49	/	PE3201	PROFESSION AL ELECTIVE –II (NPTEL/SWA YAM)	NPTEL/SWAYAM program.
50	/	OE3201	Artificial Neural Networks	<b>CO1</b> : Survey of attractive applications of Artificial Neural Networks. <b>CO2</b> : practically approach for using Artificial Neural Networks in

			(OPEN ELECTIVE –I ECE )	various technical, organizational and economic applications
51	111/11	HS3201	MANAGERIA L ECONOMICS AND FINANCIAL ACCOUNTAN CY	<ul> <li>CO1: The Learner is equipped with the knowledge of estimating the Demand and demand elasticities for a product.</li> <li>CO2: The knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs.</li> <li>CO3: The pupil is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units.</li> <li>CO4: The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis.</li> <li>CO5: The Learner can able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making.</li> </ul>
52	111/11	CS3204	WEB TECHNOLOGI ES LAB	<ul> <li>CO1: Analyze and apply the role of languages like HTML, CSS, XML</li> <li>CO2: Review JavaScript, PHP and protocols in the workings of the web and web applications</li> <li>CO3: Apply Web Application Terminologies, Internet Tools, E – Commerce and other web services</li> <li>CO4: Develop and Analyze dynamic Web Applications using PHP &amp; MySql</li> <li>CO5: Install &amp; Use Frameworks</li> </ul>
53	111/11	PR3201	Industrial Training / Skill Development Programmes / Research Project in higher learning institutes	<ul> <li>CO1: To enable students to learn the basic concepts of Project &amp; Production Management.</li> <li>CO2: To be capable of self-education and clearly understand the value of achieving Perfection in the respective Project work.</li> <li>CO3: Effectively communicate through verbal/oral communication and improve the listening skills</li> <li>CO4: Write precise briefs or reports and technical documents</li> <li>CO5: Actively participate in group discussion / meetings / interviews and prepare &amp; deliver presentations.</li> <li>CO6: identify and discuss the issues and concepts salient to the research process</li> </ul>
54	IV/I	CS4101	CRYPTOGRAP HY AND NETWORK SECURITY	<ul> <li>CO1: Identify information security goals, classical encryption techniques and acquire fundamental knowledge on the concepts of finite fields and number theory</li> <li>CO2: Compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication</li> <li>CO3: Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes.</li> <li>CO4: Apply different digital signature algorithms to achieve authentication and create secure applications</li> </ul>
				<b>CO5</b> : Apply network security basics, analyze different attacks on networks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP <b>CO6</b> : Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications
----	------	--------	------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
55	IV/I	CS4102	UML & DESIGN PATTERNS	<ul> <li>CO1: Illustrate software design with UML diagrams</li> <li>CO2: Design software applications using OO concepts</li> <li>CO3: Identify various scenarios based on software requirements</li> <li>CO4: Apply UML based software design into pattern based design using design patterns</li> <li>CO5: Illustrate the various testing methodologies for OO software</li> </ul>
56	IV/I	CS4103	MACHINE LEARNING	<ul> <li>CO1: Identify machine learning techniques suitable for a given problem</li> <li>CO2: Solve the problems using various machine learning techniques</li> <li>CO3: Apply Dimensionality reduction techniques</li> <li>CO4: Design application using machine learning techniques</li> </ul>
57	IV/I	OE4101	Block chain Technology (Open Elective –II ECE)	<ul> <li>CO1: Describe the basic concepts and technology used for block chain.</li> <li>CO2: Describe the primitives of the distributed computing and cryptography related to block chain.</li> <li>CO3: Illustrate the concepts of Bit coin and their usage.</li> <li>CO4: Implement Ethereal block chain contract.</li> <li>CO5: Apply security features in block chain technologies.</li> <li>CO6: Use smart contract in real world applications.</li> </ul>
58	IV/I	PE4101	MOBILE COMPUTING	<ul> <li>CO1: Interpret Wireless local area networks (WLAN): MAC design principles, 802.11 WIFI</li> <li>CO2: Discuss fundamental challenges in mobile communications and potential Techniques in GSM</li> <li>CO3: Demonstrate Mobile IP in Network layer</li> <li>CO4: Elaborate TCP/IP Protocols and database issues</li> <li>CO5: Illustrate different data delivery methods and synchronization protocols</li> <li>CO6: Develop applications that are mobile-device specific and demonstrate current Practice in mobile computing contexts</li> </ul>
59	IV/I	PE4101	DATA SCIENCE	<ul> <li>CO1: Describe what Data Science is and the skill sets needed to be a data scientist</li> <li>CO2: Illustrate in basic terms what Statistical Inference means. Identify probability distributions commonly used as foundations for statistical modeling, Fit a model to data</li> <li>CO3: Use R to carry out basic statistical modeling and analysis</li> <li>CO4: Apply basic tools (plots, graphs, summary statistics) to carry out EDA</li> <li>CO5: Describe the Data Science Process and how its components interact</li> <li>CO6: Use APIs and other tools to scrap the Web and collect data</li> </ul>

				<b>CO7</b> : Apply EDA and the Data Science process in a case study
60	IV/I	PE4101	NoSQL DATABASES	<ul> <li>CO1: Identify what type of NoSQL database to implement based on business requirements (key-value, document, full text, graph, etc.)</li> <li>CO2: Apply NoSQL data modeling from application specific queries</li> <li>CO3: Use Atomic Aggregates and renormalization as data modeling techniques to optimize query processing</li> </ul>
61	IV/I	PE4101	INTERNET OF THINGS	<ul> <li>CO1: Describe the usage of the term 'the internet of things' in different contexts</li> <li>CO2: Discover the various network protocols used in IoTand familiar with the key wireless technologies used in IoT systems, such as Wi-Fi, 6LoWPAN, Bluetooth and ZigBee</li> <li>CO3: Define the role of big data, cloud computing and data analytics in a typical IoT system Design a simple IoT system made up of sensors, wireless network connection, data analytics and display/actuators, and write the necessary control software</li> <li>CO4: Build and test a complete working IoT system</li> </ul>
62	IV/I	PE4101	SOFTWARE PROJECT MANAGEME NT	<ul> <li>CO1: Apply the process to be followed in the software development life-cycle models.</li> <li>CO2: Apply the concepts of project management &amp; planning.</li> <li>CO3: Implement the project plans through managing people, communications and change</li> <li>CO4: Conduct activities necessary to successfully complete and close the Software projects</li> <li>CO5: Implement communication, modeling, and construction &amp; deployment practices in software development.</li> </ul>
63	IV/I	PE4102	WEB SERVICES	<ul> <li>CO1: Recite the advantages of using XML technology family</li> <li>CO2: Analyze the problems associated with tightly coupled distributed software architecture</li> <li>CO3: Learn the Web services building block</li> <li>CO4: Implement e-business solutions using XML based web services</li> </ul>
64	IV/I	PE4102	CLOUD COMPUTING	<ul> <li>CO1: Interpret the key dimensions of the challenge of Cloud Computing</li> <li>CO2: Examine the economics, financial, and technological implications for selecting cloud computing for own organization</li> <li>CO3: Assessing the financial, technological, and organizational capacity of employer's for actively initiating and installing cloud-based applications</li> <li>CO4: Evaluate own organizations' needs for capacity building and training in cloud computing-related IT areas</li> <li>CO5: Illustrate Virtualization for Data-Center Automation</li> </ul>
65	IV/I	PE4102	MEAN STACK TECHNOLOGI ES	<ul> <li>CO1: Enumerate the Basic Concepts of Web &amp; Markup Languages</li> <li>CO2: Develop web Applications using Scripting Languages &amp; Frameworks</li> </ul>

				CO2: Make use of Express IS and Node IS frameworks
				<b>CO3</b> . Illustrate the uses of web services concents like restful
				react is
				<b>CO5</b> : Apply Deployment Techniques & Working with cloud
				platform
				<b>CO1</b> : Evaluate the principles and characteristics of mobile ad hoc
				networks (MANETs) and what distinguishes them from
			AD-HOC AND SENSOR NETWORKS	infrastructure-based networks
				<b>CO2</b> : Determine the principles and characteristics of wireless
	IV/I	PE4102		sensor networks
				CO3: Discuss the challenges in designing MAC, routing and
66				transport protocols for wireless ad-hoc sensor networks
				<b>CO4</b> : Illustrate the various sensor network Platforms, tools and
				applications
				<b>CO5</b> : Demonstrate the issues and challenges in security
				provisioning and also familiar with the mechanisms for
				implementing security and trust mechanisms in MANETs and
				WSNs
				<b>CO1</b> : Enumerate the computer forensics fundamentals
			CYBER	<b>CO2</b> : Analyze various computer forensics systems
67	IV/I	PE4102	SECURITY & FORENSICS	<b>CO3</b> : Allaryze various computer for ensus systems
				collection and data seizure
				<b>CO5</b> : Identify the Role of CERT-In Security
				<b>CO1</b> : Know the syntax of different UML diagrams
	IV/I		UML LAB	<b>CO2</b> : Create use case documents that capture requirements for a
		CS4104		software system
				<b>CO3</b> : Create class diagrams that model both the domain model
68				and design model of a software system
				<b>CO4</b> : Create interaction diagrams that model the dynamic
				aspects of a software system
				<b>CO5</b> : Write code that builds a software system
				CO6: Develop simple applications
	IV/I	PR4101	PROJECT-I	<b>CO1</b> : Understand the basic concepts & broad principles of real
				time software projects.
				CO2: Understand concepts of Project and Production
60				<b>CO2</b> : Get capable of colf education and clearly understand the
03				value of achieving perfection in project implementation &
				completion
				<b>CO4</b> : Apply the theoretical concepts to solve industrial problems
				with teamwork and multidisciplinary approach.
	IV/I	MC4101	IPR & PATENTS	<b>CO1</b> : Identify different types of Intellectual Properties (IPs), the
70				right of ownership, scope of protection as well as the ways to
				create and to extract value from IP.
				<b>CO2</b> : Recognize the crucial role of IP in organizations of different
				industrial sectors for the purposes of product and technology

				<ul> <li>development.</li> <li>CO3: Identify activities and constitute IP infringements and the remedies available to the IP owner and describe the precautious steps to be taken to prevent infringement of proprietary rights in products and technology development.</li> <li>CO4: Be familiar with the processes of Intellectual Property Management (IPM) and various approaches for IPM and conducting IP and IPM auditing and explain how IP can be managed as a strategic resource and suggest IPM strategy.</li> <li>CO5: Be able to anticipate and subject to critical analysis arguments relating to the development and reform of intellectual property right institutions and their likely impact on creativity and innovation.</li> <li>CO6: Be able to demonstrate a capacity to identify, apply and assess ownership rights and marketing protection under intellectual property law as applicable to information, ideas, new products and product marketing;</li> </ul>
71	IV/II	HS4201	MANAGEME NT AND ORGANIZATI ONAL BEHAVIOR	<ul> <li>CO1: acquire the knowledge on management functions, global leadership and organizational structure</li> <li>CO2: Will familiarize with the concepts of functional management that is HRM and Marketing of new product developments</li> <li>CO3: The learner is able to think in strategically through contemporary management practices</li> <li>CO4: The learner can develop positive attitude through personality development and can equip with motivational theories</li> <li>CO5: The student can attain the group performance and grievance handling in managing the organizational culture</li> </ul>
72	IV/II	OE4201	Smart Cities Open Elective – III(CIVIL)	
73	IV/II	PE4201	DEEP LEARNING	<ul> <li>CO1: Demonstrate the mathematical foundation of neural network</li> <li>CO2: Describe the machine learning basics</li> <li>CO3: Differentiate architecture of deep neural network</li> <li>CO4: Build a convolution neural network</li> <li>CO5: Build and train RNN and LSTMs</li> </ul>
74	IV/II	PE4201	QUANTUM COMPUTING	<ul> <li>CO1: Analyze the behavior of basic quantum algorithms</li> <li>CO2: Implement simple quantum algorithms and information channels in the quantum circuit model</li> <li>CO3: Simulate a simple quantum error-correcting code</li> <li>CO4: Prove basic facts about quantum information channels</li> </ul>
75	IV/II	PE4201	DevOps	<b>CO1</b> : Enumerate the principles of continuous development and deployment, automation of configuration management, interteam collaboration, and IT service agility

				<ul> <li>CO2: Describe DevOps &amp; DevSecOps methodologies and their key concepts</li> <li>CO3: Illustrate the types of version control systems, continuous integration tools, continuous monitoring tools, and cloud models</li> <li>CO4: Set up complete private infrastructure using version control systems and CI/CD tools</li> </ul>
76	IV/II	PE4201	BLOCKCHAIN TECHNOLOGI ES	<ul> <li>CO1: Demonstrate the foundation of the Block chain technology and understand the processes in payment and funding.</li> <li>CO2: Identify the risks involved in building Block chain applications.</li> <li>CO3: Review of legal implications using smart contracts.</li> <li>CO4: Choose the present landscape of Block chain implementations and Understand Crypto currency markets</li> <li>CO5: Examine how to profit from trading crypto currencies.</li> </ul>
77	1∨/11	PE4201	BIG DATA ANALYTICS	<ul> <li>CO1: Illustrate big data challenges in different domains including social media, transportation, finance and medicine</li> <li>CO2: Use various techniques for mining data stream</li> <li>CO3: Design and develop Hardtop</li> <li>CO4: Identify the characteristics of datasets and compare the trivial data and big data for various applications</li> <li>CO5: Explore the various search methods and visualization techniques</li> </ul>
78	IV/II	PR4201	PROJECT -II	<ul> <li>CO1: Understand the basic concepts &amp; broad principles of real time software projects.</li> <li>CO2: Understand concepts of Project and Production Management</li> <li>CO3: Get capable of self education and clearly understand the value of achieving perfection in project implementation &amp; completion.</li> <li>CO4: Apply the theoretical concepts to solve industrial problems with teamwork and multidisciplinary approach</li> <li>CO5: Demonstrate professionalism with ethics; present effective communication skills and relate engineering issues.</li> </ul>

HOD-CSE